【題目】如圖,四邊形ABCD的對(duì)角線相交于點(diǎn)O,且點(diǎn)O是BD的中點(diǎn),若AB=AD=5,BD=8,∠ABD=∠CDB,則四邊形ABCD的面積為( )
A.40B.24C.20D.15
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列例題的解題過(guò)程,并完成相關(guān)問(wèn)題
例:如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12cm,BC=18cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).從運(yùn)動(dòng)開(kāi)始,使PQ∥CD和PQ=CD,分別經(jīng)過(guò)多長(zhǎng)時(shí)間?為什么?
解:①設(shè)經(jīng)過(guò)ts時(shí),PQ∥CD且PQ=CD,此時(shí)四邊形PQCD為平行四邊形.
∵PD=(12-t)cm,CQ=2t cm,
∴12-t=2t.∴t=4.
∴當(dāng)t=4時(shí),PQ∥CD,且PQ=CD.
②設(shè)經(jīng)過(guò)ts時(shí),PQ=CD,分別過(guò)點(diǎn)P,D作BC邊的垂線PE,DF,垂足分別為E,F.
當(dāng)CF=EQ時(shí),四邊形PQCD為梯形(腰相等)或者平行四邊形.
∵∠B=∠A=∠DFB=90°,
∴四邊形ABFD是矩形.∴AD=BF.
∵AD=12 cm,BC=18 cm,
∴CF=BC-BF=6 cm.
當(dāng)四邊形PQCD為梯形(腰相等)時(shí),
PD+2(BC-AD)=CQ,
∴(12-t)+12=2t.∴t=8.
∴當(dāng)t=8時(shí),PQ=CD.
當(dāng)四邊形PQCD為平行四邊形時(shí),由①知當(dāng)t=4時(shí),PQ=CD.
綜上,當(dāng)t=4時(shí),PQ∥CD;當(dāng)t=4或t=8時(shí),PQ=CD.
問(wèn)題1:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQCD是菱形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
問(wèn)題2:從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),四邊形PQBA是矩形?
問(wèn)題3:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQBA是正方形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
問(wèn)題4:是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請(qǐng)你將小明的證明過(guò)程補(bǔ)充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是長(zhǎng)為10m,傾斜角為37°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某森林公園從正門(mén)到側(cè)門(mén)有一條公路供游客運(yùn)動(dòng),甲徒步從正門(mén)出發(fā)勻速走向側(cè)門(mén),出發(fā)一段時(shí)間開(kāi)始休息,休息了0.6小時(shí)后仍按原速繼續(xù)行走.乙與甲同時(shí)出發(fā),騎自行車從側(cè)門(mén)勻速前往正門(mén),到達(dá)正門(mén)后休息0.2小時(shí),然后按原路原速勻速返回側(cè)門(mén).圖中折線分別表示甲、乙到側(cè)門(mén)的路程y(km)與甲出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.根據(jù)圖象信息解答下列問(wèn)題.
(1)求甲在休息前到側(cè)門(mén)的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.
(2)求甲、乙第一次相遇的時(shí)間.
(3)直接寫(xiě)出乙回到側(cè)門(mén)時(shí),甲到側(cè)門(mén)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)A的坐標(biāo)為(﹣4,0),頂點(diǎn)B在第二象限,∠BAO=60°,BC交y軸于點(diǎn)D,DB:DC=3:1.若函數(shù)y= (k>0,x>0)的圖象經(jīng)過(guò)點(diǎn)C,則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料;
課堂上,老師設(shè)計(jì)了一個(gè)活動(dòng):將一個(gè)4×4的正方形網(wǎng)格沿著網(wǎng)格線劃分成兩部分(分別用陰影和空白表示),使得這兩部分圖形是全等的,請(qǐng)同學(xué)們嘗試給出劃分的方法.約定:如果兩位同學(xué)的劃分結(jié)果經(jīng)過(guò)旋轉(zhuǎn)、翻折后能夠重合,那么就認(rèn)為他們的劃分方法相同.
小方、小易和小紅分別對(duì)網(wǎng)格進(jìn)行了劃分,結(jié)果如圖①、圖②、圖③所示.
小方說(shuō):“我們?nèi)齻(gè)人的劃分方法都是正確的,但是將小紅的整個(gè)圖形(圖③)逆時(shí)針旋轉(zhuǎn)90后得到的劃分方法與我的劃分方法(圖①)是一樣的,應(yīng)該認(rèn)為是同一種方法,而小易的劃分方法與我的不同,”
老師說(shuō):“小方說(shuō)得對(duì).”
完成下列問(wèn)題:
(1)圖④的劃分方法是否正確?
(2)判斷圖⑤的劃分方法與圖②小易的劃分方法是否相同,并說(shuō)明你的理由.
(3)請(qǐng)你再想出一種與已有方法不同的劃分方法,使之滿足上述條件,并在圖⑥中畫(huà)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(a,b)在雙曲線y= 上,若a、b都是正整數(shù),則圖象經(jīng)過(guò)B(a,0)、C(0,b)兩點(diǎn)的一次函數(shù)的解析式(也稱關(guān)系式)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在1~7月份,某地的蔬菜批發(fā)市場(chǎng)指導(dǎo)菜農(nóng)生產(chǎn)和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價(jià)與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤(rùn)最大的月份可能是( )
A.1月份
B.2月份
C.5月份
D.7月份
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com