【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.

【答案】
(1)

解:配方,得(x+1)2=10000,

∴x+1=±100,

∴x1=99,x2=﹣101


(2)

解:這里a=2,b=﹣2,c=﹣1,

∵△=4+8=12>0,

∴x= = ,

解得:x1= ,x2=


【解析】(1)方程整理后,利用配方法求出解即可;(2)找出a,b,c的值,代入求根公式求出解即可.
【考點(diǎn)精析】本題主要考查了配方法和公式法的相關(guān)知識點(diǎn),需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無實(shí)根便得知.有實(shí)根可套公式,沒有實(shí)根要告之才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度數(shù);

(2)延長AC至E,使CE=AC,求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,后解答:

像上述解題過程中,相乘,積不含有二次根式,我們可將這兩個式子稱為互為有理化因式,上述解題過程也稱為分母有理化,

(1)的有理化因式是________;的有理化因式是________.

(2)將下列式子進(jìn)行分母有理化:①________;②________.

(3)計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題的個數(shù)( 。

(1)已知直角三角形面積為4,兩直角邊的比為1:2,則它的斜邊為5;

(2)直角三角形的最大邊長為26,最短邊長為10,則另一邊長為24;

(3)在直角三角形中,兩條直角邊長為n2﹣12n,則斜邊長為n2+1;

(4)等腰三角形面積為12,底邊上的底為4,則腰長為5.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L(fēng)1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.

(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對稱軸對稱的點(diǎn)D的坐標(biāo);
(2)請求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,將△APB繞點(diǎn)B逆時針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點(diǎn)G.下列結(jié)論錯誤的是( 。

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=x2+bx+c的圖象與x 軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y 軸交于點(diǎn)C,頂點(diǎn)為D,對稱軸為直線l.

(1)求該二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E 是對稱軸l 右側(cè)拋物線上一點(diǎn),且SADE=2SAOC , 求點(diǎn)E 的坐標(biāo);
(3)如圖2,連接DC 并延長交x 軸于點(diǎn)F,設(shè)P 為線段BF 上一動點(diǎn)(不與B、F 重合),過點(diǎn)P 作PQ∥BD 交直線BC 于點(diǎn)Q,將直線PQ 繞點(diǎn)P 沿順時針方向旋轉(zhuǎn)45°后,所得的直線交DF 于點(diǎn)R,連接QR.請直接寫出當(dāng)△PQR 與△PFR 相似時點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,BP、CP分別是∠ABC和∠ACB的角平分線,∠BPC=134°,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案