【題目】如圖1,已知二次函數(shù)y=x2+bx+c的圖象與x 軸交于A(﹣1,0)、B(3,0)兩點,與y 軸交于點C,頂點為D,對稱軸為直線l.

(1)求該二次函數(shù)的表達式;
(2)若點E 是對稱軸l 右側拋物線上一點,且SADE=2SAOC , 求點E 的坐標;
(3)如圖2,連接DC 并延長交x 軸于點F,設P 為線段BF 上一動點(不與B、F 重合),過點P 作PQ∥BD 交直線BC 于點Q,將直線PQ 繞點P 沿順時針方向旋轉45°后,所得的直線交DF 于點R,連接QR.請直接寫出當△PQR 與△PFR 相似時點P 的坐標.

【答案】
(1)

解:將點A和點B的坐標代入拋物線的解析式得 ,解得 ,

∴二次函數(shù)的表達式為y=x2﹣2x﹣3;


(2)

解:設E(m,m2﹣2m﹣3),過點E作EM∥x軸,交AD于點M,(如圖1)

由y=x2﹣2x﹣3=( x﹣1)2﹣4得頂點D(1,﹣4),C(0,﹣3),

∴SADE=2SAOC=3,

∵A(﹣1,0)、D(1,﹣4),

∴直線AD為:y=﹣2x﹣2,

∵E(m,m2﹣2m﹣3),

∴M( ,m2﹣2m﹣3),

∴EM=

∴SADE ×4×EM=2EM=m2﹣1=3,

解得m=±2(其中m=﹣2舍去),

∴E(2﹣3);


(3)

解:∵C(0,﹣3),D(1,﹣4),

∴直線CD的解析式為:y=﹣x﹣3.

當y=0時,x=﹣3,

故F(0,﹣3),

∴OF=OC=3,

∴∠OFC=45°,即∠PFR=45°.

∵PQ∥BD,

∴∠FPQ≠90°,

∴∠FPR≠45°,

∴當△PQR 與△PFR 相似時:

△PQR∽△FRP,則

點P的坐標是:P1 ,0)、P2(0,0).


【解析】(1)由A、B兩點的坐標,利用待定系數(shù)法可求得二次函數(shù)的表達式;(2)設E(m,m2﹣2m﹣3),過點E作EM∥x軸,交AD于點M,由條件可得△AOC的面積,從而可求得△ADE的面積,利用待定系數(shù)法可求得直線AD的解析式,則可用m表示出EM的長,從而可用m表示出△ADE的面積,從而可得到關于m的方程,可求得m的值;(3)由C、D坐標可求得直線CD的解析式,從而可求得F點坐標,可求得OF=OC,可得∠RFP=∠RPQ=45°,由△PQR 與△PFR 相似得到:△PQR∽△FRP 或△PQR∽△FPR,結合相似三角形的對應邊成比例得到點P的坐標.
【考點精析】通過靈活運用確定一次函數(shù)的表達式和三角形的面積,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;三角形的面積=1/2×底×高即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l及其兩側兩點A、B.

(1)在直線l上求一點O,使到A、B兩點距離之和最短;

(2)在直線l上求一點P,使PA=PB;

(3)在直線l上求一點Q,使l平分AQB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2,BC=4,P為矩形邊上的一個動點,運動路線是A→B→C→D→A,設P點經(jīng)過的路程為x,以A,P,B為頂點的三角形面積為y,則選項圖象能大致反映yx的函數(shù)關系的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD 中,E、F 分別為BC、AD 上的點,將四邊形ABEF 沿直線EF 折疊后,點B 落在CD 邊上的點G 處,點A 的對應點為點H.再將折疊后的圖形展開,連接BF、GF、BG,若BF⊥GF.
(1)求證:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù),它的圖象與軸交于點,與軸交于點

的坐標為________,點的坐標為________;

畫出此函數(shù)圖象;

畫出該函數(shù)圖象向下平移個單位長度后得到的圖象;

寫出一次函數(shù)圖象向下平移個單位長度后所得圖象對應的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BD,CE是△ABC的兩條高,直線BD,CE相交于點H.

(1)若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC中∠BAC=50°,直接寫出∠DHE的度數(shù)是____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,P是AD上一動點,O為BD的中點,連接PO并延長,交BC于點Q.

(1) 求證:四邊形PBQD是平行四邊形

(2) 若AD=6cm,AB=4cm, 點P從點A出發(fā),以1cm/s的速度向點D運動(不與點D重合),設點P運動時間為t s , 請用含t的代數(shù)式表示PD的長,并求出當t為何值時,四邊形PBQD是菱形。并求出此時菱形的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解家長關注孩子成長方面的狀況,學校開展了針對學生家長的“您最關心孩子哪方面成長”的主題調查,調查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調查,根據(jù)調查結果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學生家長,據(jù)此估計,有多少位家長最關心孩子“情感品質”方面的成長?
(3)綜合以上主題調查結果,結合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關注和指導?

查看答案和解析>>

同步練習冊答案