分析 (1)根據(jù)正方形的性質(zhì),由SAS證明△BAG≌△DAE,得出DE=BG,∠ABG=∠ADE,再由角的互余關系證出DE⊥BG即可;
(2)同(1)證明△BAG≌△DAE,從而證明結(jié)論;
(3)以OA為邊作正方形QAGF,連接QG、BG,則QC=√2OA=4,當G、Q、B三點共線時,BG最長,此時BC=QC+QB=8,從而得出答案.
解答 (1)解:DE=BG,DE⊥BG;理由如下:
延長DE交BG于H,如圖1所示:
∵四邊形ABCD、四邊形AEFG都是正方形,
∴AB=AD,AG=AE,∠EAD=∠BAG=90°,
在△BAG與△DAE中,{AB=AD∠BAG=∠EADAG=AE,
∴△BAG≌△DAE(SAS),
∴DE=BG,∠ABG=∠ADE,
∵∠AGB+∠ABG=90°,
∴∠AGB+∠ADE=90°,
∴∠DHG=90°,
∴DE⊥BG;
(2)解:(1)中的結(jié)論成立,即DE=BG,DE⊥BG;
理由如下:如圖2所示,
∵四邊形ABCD、四邊形AEFG都是正方形,
∴BA=AD,AG=AE,∠BAD=∠EAG=90°,
∴∠BAG+∠BAE=∠EAG+∠BAE,
即∠BAG=∠DAE,在△BAG與△DAE中,{AB=AD∠BAG=∠EADAG=AE,
∴△BAG≌△DAE(SAS),
∴DE=BG,∠ABG=∠ADE
∵∠AMD+∠ADE=90°,∠AMD=∠BME,
∴∠BME+∠ABG=90°,
∴∠DNB=90°,
∴DE⊥BG;
(3)解:QD存在最大值;理由如下:
以QA為邊作正方形QAGF,連接QG、BG,如圖3所示:
則QG=√2QA=4,
由(2)可得:QD=BG,
當G、Q、B三點共線時,BG最長,
此時BC=QG+QB=4+4=8,
即線段QD長的最大值為8.
點評 本題是四邊形綜合題目,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、角的互余關系、對頂角相等、三點共線等知識;本題綜合性強,證明三角形全等是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 100(√3+1)米 | B. | 100米 | C. | 100√2 | D. | 200√3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com