【題目】在平面直角坐標系xOy中,直線y=2x+my軸交于點A,與直線y=﹣x+4交于點B(3,n),P為直線y=﹣x+4上一點.

(1)求m,n的值;

(2)在平面直角坐標系系xOy中畫直線y=2x+m和直線y=﹣x+4;

(3)當線段AP最短時,求點P的坐標.

【答案】(1)m=﹣5;(2)詳見解析;(3)

【解析】

(1)首先把點B(3,n)代入直線y=﹣x+4得出n的值,再進一步代入直線y=2x+m求得m的值即可;(2)根據(jù)兩點法畫一次函數(shù)圖形即可;(3)過點A作直y=﹣x+4的垂線,垂足為P,進一步利用等腰直角三角形的性質(zhì)和(1)中與y軸交點的坐標特征解決問題.

解:(1)∵點B(3,n)在直線上y=﹣x+4,

∴n=1,B(3,1)

∵點B(3,1)在直線上y=2x+m上,

∴m=﹣5.

(2)在坐標系中畫出y=2x﹣5,y=﹣x+4,如圖①,

(3)過點A作直線y=﹣x+4的垂線,垂足為P,如圖②

,

此時線段AP最短.

∴∠APN=90°,

∵直線y=﹣x+4與y軸交點N(0,4),直線y=2x﹣5與y軸交點A(0,﹣5),

∴AN=9,∠ANP=45°,

∴AM=PM= ,

∴OM=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行1500米比賽,在比賽時,兩人所跑的路程y()與所用的時間x()間的函數(shù)關系如圖所示,解答下列問題:

(1)求甲的速度等于多少米/分;

(2)當乙到終點時,甲距離終點有多遠;

(3)乙在距終點多遠處追上了甲.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DEBC邊所在的直線交于點E,點P是線段DE上一定點(其中EP<PD
1)如圖1,若點FCD邊上(不與D重合),將∠DPF繞點P逆時針旋轉90°后,角的兩邊PD、PF分別交射線DA于點H、G
①求證:PG=PF

②探究:DF、DGDP之間有怎樣的數(shù)量關系,并證明你的結論.
2)拓展:如圖2,若點FCD的延長線上(不與D重合),過點PPGPF,交射線DA于點G,你認為(1)中DE、DGDP之間的數(shù)量關系是否仍然成立?若成立,給出證明;若不成立,請寫出它們所滿足的數(shù)量關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點DOA的中點,點PBC上運動,當ODP是腰長為5的等腰三角形時,則P點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB為等腰三角形,頂點A的坐標(2,),底邊OBx軸上.將AOB繞點B按順時針方向旋轉一定角度后得A′O′B,點A的對應點A′x軸上,則點O′的坐標為( 。

A. , B. , C. D. ,4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為預防傳染病,某校定期對教室進行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時間成正比例;燃燒后,成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:

1)分別求出藥物燃燒時及燃燒后 關于的函數(shù)表達式.

2)當每立方米空氣中的含藥量低于 時,對人體方能無毒害作用,那么從消毒開始,在哪個時段消毒人員不能停留在教室里?

3)當室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20191027日,軍運會閉幕,軍運村對武漢市民正式銷售,此樓盤開盤均價20000/ m2,為了加快資金回籠,房地產(chǎn)開發(fā)商決定將價格下調(diào)10%對外銷售,并在此基礎上再給予以下三種優(yōu)惠方案供客戶選擇:

①一次性付款可以再打9.8折銷售;

②一次性付款,不享受折上折,但可送兩年物業(yè)管理費(物業(yè)管理費是每平方米每月3元),再一次性送30000元裝修費;

③如果先付總房款的一半,可送一年的物業(yè)管理費,再一次性送10000元裝修費,但是一年后必須一次性付清余下的房款.(注:該年將錢存入銀行,銀行的年利率為3%

(1)若所購房屋面積為a m2,分別用含a的代數(shù)式表示這三種方案的買房費用。

(2)某客戶準備購買其中一套100 m2的房子,如果該客戶有能力一次性付清所有房費,請問他該選擇哪種付款方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD,B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.

(1)求點C的坐標;

(2)當∠BCP=15°時,求t的值;

(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

同步練習冊答案