【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
【答案】(1)點(diǎn)C的坐標(biāo)為(0,3);(2)t的值為4+或4+3;(3)t=1或4或5.6
【解析】試題分析:(1)由∠CBO=45°,∠BOC為直角,得到△BOC為等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性質(zhì)知OC=OB=3,然后由點(diǎn)C在y軸的正半軸可以確定點(diǎn)C的坐標(biāo);
(2)需要對點(diǎn)P的位置進(jìn)行分類討論:①當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),如圖2所示,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO為30°,又OC=3,在Rt△POC中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出OP的長,由PQ=OQ+OP求出運(yùn)動(dòng)的總路程,由速度為1個(gè)單位/秒,即可求出此時(shí)的時(shí)間t;②當(dāng)點(diǎn)P在點(diǎn)B左側(cè)時(shí),如圖3所示,用∠BCO+∠BCP求出∠PCO為60°,又OC=3,在Rt△POC中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出OP的長,由PQ=OQ+OP求出運(yùn)動(dòng)的總路程,由速度為1個(gè)單位/秒,即可求出此時(shí)的時(shí)間t;
(3)當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),分三種情況考慮:
①當(dāng)⊙P與BC邊相切時(shí),利用切線的性質(zhì)得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此時(shí)△COP為等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出P運(yùn)動(dòng)的路程,即可得出此時(shí)的時(shí)間t;
②當(dāng)⊙P與CD相切于點(diǎn)C時(shí),P與O重合,可得出P運(yùn)動(dòng)的路程為OQ的長,求出此時(shí)的時(shí)間t;
③當(dāng)⊙P與AD相切時(shí),利用切線的性質(zhì)得到∠DAO=90°,得到此時(shí)A為切點(diǎn),由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出關(guān)于t的方程,求出方程的解得到此時(shí)的時(shí)間t.
綜上,得到所有滿足題意的時(shí)間t的值.
試題解析::(1)∵∠BCO=∠CBO=45°,
∴OC=OB=3,
又∵點(diǎn)C在y軸的正半軸上,
∴點(diǎn)C的坐標(biāo)為(0,3);
(2)分兩種情況考慮:
①當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),如圖2,
若∠BCP=15°,得∠PCO=30°,
故PO=COtan30°=,此時(shí)t=4+;
②當(dāng)點(diǎn)P在點(diǎn)B左側(cè)時(shí),如圖3,
由∠BCP=15°,得∠PCO=60°,
故OP=COtan60°=3,
此時(shí),t=4+3,
∴t的值為4+或4+3;
(3)由題意知,若⊙P與四邊形ABCD的邊相切時(shí),有以下三種情況:
①當(dāng)⊙P與BC相切于點(diǎn)C時(shí),有∠BCP=90°,
從而∠OCP=45°,得到OP=3,此時(shí)t=1;
②當(dāng)⊙P與CD相切于點(diǎn)C時(shí),有PC⊥CD,即點(diǎn)P與點(diǎn)O重合,此時(shí)t=4;
③當(dāng)⊙P與AD相切時(shí),由題意,得∠DAO=90°,
∴點(diǎn)A為切點(diǎn),如圖4,PC2=PA2=(9-t)2,PO2=(t-4)2,
于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,
解得:t=5.6,
∴t的值為1或4或5.6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正多邊形的內(nèi)角和為1080°,則這個(gè)正多邊形的每個(gè)外角為( 。
A. 30° B. 45° C. 60° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做這樣一道題:“計(jì)算:|(-3)+口|.”其中“口”處被污漬覆蓋,他翻開后面的答案知該題的計(jì)算結(jié)果是6,那么“口”表示的數(shù)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場要建一個(gè)長方形的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.
(1)若養(yǎng)雞場面積為200m2,求雞場靠墻的一邊長.
(2)養(yǎng)雞場面積能達(dá)到250m2嗎?如果能,請給出設(shè)計(jì)方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子由左到右的變形中,屬于因式分解的是( 。
A. (x+2y)2=x2+4xy+4y2B. x2﹣2y+4=(x﹣1)2+3
C. 3x2﹣2x﹣1=(3x+1)(x﹣1)D. m(a+b+c)=ma+mb+mc
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A的坐標(biāo)是(﹣2,5),則點(diǎn)A在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,說法正確的個(gè)數(shù)有( )
①有兩個(gè)角相等的三角形是等腰三角形;②等腰三角形的兩底角相等;③鈍角三角形不可能使等腰三角形;④有一高與一中線重合的三角形是等腰三角形;⑤在三角形中,相等的邊所對的角也相等
A. 1個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高速路上因趕時(shí)間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機(jī)測試了6個(gè)小轎車的車速情況記錄如下:
車序號 | 1 | 2 | 3 | 4 | 5 | 6 |
車速(千米/時(shí)) | 100 | 95 | 106 | 100 | 120 | 100 |
則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時(shí))分別是( )
A.100,95
B.100,100
C.102,100
D.100,103
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com