【題目】如圖,以ABCD 的四條邊為邊,分別向外作正方形,連結(jié) EF,GH,IJ,KL.如果ABCD 的 面積為 8,則圖中陰影部分四個三角形的面積和為( )
A.8B.12C.16D.20
【答案】C
【解析】
連接AC,通過證明△EAF≌△ABC,可求S△EAF==4,同理求出理S△BHG= S△CIJ= S△DLK==4,即可求出陰影部分四個三角形的面積和.
解:連接AC,
∵四邊形ABGF和四邊形ADLE是正方形,
∴AE=AD,AF=AB,∠FAB=∠EAD=90°,
∴∠EAF+∠BAD=360°-90°-90°=180°,
∵∠BAD+∠ABC=180°,
∴∠EAF=∠ABC,
在△EAF和△ABC中,
∵AE=AD=BC,
∠EAF=∠ABC,
AF=AB,
∴△EAF≌△ABC,
∴S△EAF≌S△ABC==4,
同理可求:S△BHG= S△CIJ= S△DLK==4,
∴陰影部分的面積S=S△AEF+S△BGH+S△CIJ+S△DLK=4×4=16.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為一個矩形紙片,AB=3,BC=2,動點P自D點出發(fā)沿DC方向運動至C點后停止,△ADP以直線AP為軸翻折,點D落在點D1的位置,設(shè)DP=x,△AD1P與原紙片重疊部分的面積為y.
(1)當(dāng)x為何值時,直線AD1過點C?
(2)當(dāng)x為何值時,直線AD1過BC的中點E?
(3)求出y與x的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】吉林省廣播電視塔(簡稱“吉塔”)是我省目前最高的人工建筑,也是俯瞰長春市美景的最佳去處.某科技興趣小組利用無人機搭載測量儀器測量“吉塔”的高度.已知如圖將無人機置于距離“吉塔”水平距離138米的點C處,則從無人機上觀測塔尖的仰角恰為30°,觀測塔基座中心點的俯角恰為45°.求“吉塔”的高度.(注: ≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC邊上一點,DF⊥AE于F,BG⊥AE于G.
(1)求證:DF=BG+FG.
(2)連接FC,CG,若四邊形DCGF的面積為40,求FC的長.
(3)在(2)的條件下,若AG=7,P為FC的延長線上任一點,連PD、PG,直接寫出的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,F是CD邊上一點(不與C、D重合),過點D作DG⊥BF交BF延長線于點G.連接AG,交BD于點E,交CD于點M,連接EF.若DG=4,AG=,則EF的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個交點是(5,0);②4a+c>2b;③4a+b=0;④當(dāng)x>-1時,y的值隨x值的增大而增大.其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M的橫坐標(biāo)是的平方根,縱坐標(biāo)是2,且點M到y軸的距離是到x軸的距離的3倍。
(1)求a的值;
(2)求點M的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com