【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問(wèn)題
(1)請(qǐng)直接寫(xiě)出a、b、c的值.a(chǎn)= , b= , c=
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為易動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|﹣|x﹣1|+2|x+5|(請(qǐng)寫(xiě)出化簡(jiǎn)過(guò)程)

(3)在(1)(2)的條件下,點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

【答案】
(1)-1;1;5
(2)解:當(dāng)0≤x≤1時(shí),x+1>0,x﹣1≤0,x+5>0,

則:|x+1|﹣|x﹣1|+2|x+5|

=x+1﹣(1﹣x)+2(x+5)

=x+1﹣1+x+2x+10

=4x+10;

當(dāng)1<x≤2時(shí),x+1>0,x﹣1>0,x+5>0.

∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)

=x+1﹣x+1+2x+10

=2x+12


(3)解:不變.

∵點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),點(diǎn)B每秒2個(gè)單位長(zhǎng)度向右運(yùn)動(dòng),

∴A,B每秒鐘增加3個(gè)單位長(zhǎng)度;

∵點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),

∴B,C每秒鐘增加3個(gè)單位長(zhǎng)度.

∴BC﹣AB=2,BC﹣AB的值不隨著時(shí)間t的變化而改變


【解析】解:(1)∵b是最小的正整數(shù),
∴b=1.
根據(jù)題意得:
∴a=﹣1,b=1,c=5;
【考點(diǎn)精析】利用數(shù)軸對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱(chēng)正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱(chēng)這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC. ①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件上衣,每件原價(jià)500元,第一次降價(jià)后,銷(xiāo)售甚慢,于是再次進(jìn)行大幅降價(jià),第二次降價(jià)的百分率是第一次降價(jià)的百分率的2倍,結(jié)果這批上衣以每件240元的價(jià)格迅速售出,求兩次降價(jià)的百分率各是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x=10的解有________個(gè),不等式2x<10的解有________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,單價(jià)40元,經(jīng)市場(chǎng)預(yù)測(cè),銷(xiāo)售定價(jià)為52元時(shí),可售出180個(gè),定價(jià)每增加1元,銷(xiāo)售量減少10個(gè).因受庫(kù)存影響,每批次進(jìn)貨個(gè)數(shù)不得超過(guò)180個(gè).商店若準(zhǔn)備獲利2000元,則應(yīng)進(jìn)貨多少個(gè)?定價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)2,3,5,5,4的眾數(shù)是( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)有三點(diǎn)A(2,2 ),B(5,2 ),C(5, ).
(1)請(qǐng)確定一個(gè)點(diǎn)D,使四邊形ABCD為長(zhǎng)方形,寫(xiě)出點(diǎn)D的坐標(biāo).
(2)求這個(gè)四邊形的面積(精確到0.01).
(3)將這個(gè)四邊形向右平移2個(gè)單位,再向下平移3 個(gè)單位,求平移后四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要了解全市中考生的數(shù)學(xué)成績(jī)?cè)谀骋环秶鷥?nèi)的學(xué)生所占比例的大小,需知道相應(yīng)樣本的______(填平均數(shù)頻數(shù)分布

查看答案和解析>>

同步練習(xí)冊(cè)答案