【題目】如圖,在Rt△ABC中,∠ACB=90°,CDAB邊上的高,若點A關(guān)于CD所在直線的對稱點E恰好為AB的中點,則∠B的度數(shù)是( )

A. 60°B. 45°C. 30°D. 75°

【答案】C

【解析】

試題根據(jù)軸對稱的性質(zhì)可知∠CED=∠A,根據(jù)直角三角形斜邊上的中線的性質(zhì)、等腰三角形的性質(zhì)可得∠ECA=∠A,∠B=∠BCE,根據(jù)等邊三角形的判定和性質(zhì)可得∠CED=60°,再根據(jù)三角形外角的性質(zhì)可得∠B的度數(shù),從而求得答案.

解:Rt△ABC中,∠ACB=90°,CDAB邊上的高,點A關(guān)于CD所在直線的對稱點E恰好為AB的中點,

∴∠CED=∠A,CE=BE=AE,

∴∠ECA=∠A,∠B=∠BCE,

∴△ACE是等邊三角形,

∴∠CED=60°,

∴∠B=∠CED=30°

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(3分)如圖,在直角坐標系中,直線與坐標軸交于A、B兩點,與雙曲線)交于點C,過點C作CDx軸,垂足為D,且OA=AD,則以下結(jié)論:

;

當0<x<3時,;

如圖,當x=3時,EF=

當x>0時,隨x的增大而增大,隨x的增大而減。

其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:a、b為有理數(shù),下列說法: a、b互為相反數(shù),則;,則;,則是正數(shù).其中正確的有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點0AC邊上一動點,過點0DE,使DEBC,DE交∠ACB的角平分線于點D,交∠ACB的外角平分線于點E.

(1)求證:OD=OE;

(2)當點0運動到何處時,四邊形CDAE是矩形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

問題:如圖1,在平行四邊形ABCD中,EAD上一點,AE=AB,EAB=60°,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG.

求證:EG =AG+BG.

小明同學的思路是:作∠GAH=EABGE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.

參考小明同學的思路,探究并解決下列問題:

(1)完成上面問題中的證明;

(2)如果將原問題中的EAB=60°”改為EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形角平分線交點或三角形內(nèi)切圓的圓心都稱為三角形的內(nèi)心.按此說法,四邊形的四個角平分線交于一點我們也稱為“四邊形的內(nèi)心”

(1)試舉出一個有內(nèi)心的四邊形

(2)探究對于任意四邊形ABCD,如果有內(nèi)心則四邊形的邊長具備何種條件?為什么?

(3)探究腰長為的等腰直角三角形ABC,∠C=90°,OABC的內(nèi)心,若沿圖中虛線剪開,O仍然是四邊形ABDE的內(nèi)心,此時裁剪線有多少條?

(4)問題(3)中,O是四邊形ABDE內(nèi)心,且四邊形ABDE是等腰梯形,DE的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時裝每件進價Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,點DE分別是邊AB、AC的中點,將ADE繞點A旋轉(zhuǎn),BDCE所在的直線交于點F

(1)如圖(2)所示,將ADE繞點A逆時針旋轉(zhuǎn),且旋轉(zhuǎn)角不大于60°,∠CFB的度數(shù)是多少?說明你的理由?

(2)ADE繞點A旋轉(zhuǎn)時,若BCF為直角三角形,求出線段BF的長.

查看答案和解析>>

同步練習冊答案