【題目】某文具店銷售一種進(jìn)價(jià)為每本10元的筆記本,為獲得高利潤,以不低于進(jìn)價(jià)進(jìn)行銷售,結(jié)果發(fā)現(xiàn),每月銷售量y與銷售單價(jià)x之間的關(guān)系可以近似地看作一次函數(shù):y=﹣5x+150,物價(jià)部門規(guī)定這種筆記本每本的銷售單價(jià)不得高于18元.
(1)當(dāng)每月銷售量為70本時(shí),獲得的利潤為多少元;
(2)該文具店這種筆記本每月獲得利潤為W元,求每月獲得的利潤W元與銷售單價(jià)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤,最大利潤為多少元?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),如圖是 3×3 的正方形網(wǎng)格,已知 A,B 是兩格點(diǎn),C是不同于點(diǎn)A和B的格點(diǎn),下列說法正確的是( ).
A.ΔABC是直角三角形,這樣的點(diǎn)C有4個(gè)
B.ΔABC是等腰三角形,這樣的點(diǎn)C有4個(gè)
C.ΔABC是等腰直角三角形,這樣的點(diǎn)C有6個(gè)
D.ΔABC是等腰直角三角形,這樣的點(diǎn)C有2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F.
(1)求證:△DAC≌△EAB.
(2)求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點(diǎn)A(a,2),并且直線y=kx+b經(jīng)過x軸上點(diǎn)B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求點(diǎn)D坐標(biāo)及二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點(diǎn)E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(,0)、B(0,1),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……則三角形(2020)的直角頂點(diǎn)的橫坐標(biāo)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com