【題目】如圖,直線y=-2x與直線ykxb相交于點A(a,2),并且直線ykxb經(jīng)過x軸上點B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

【答案】1)一次函數(shù)的解析式是y=-x;(2SABC;(3x≥1.

【解析】試題分析:利用代入法求出點A的坐標,然后根據(jù)待定系數(shù)法求出一次函數(shù)的解析式;

(2)根據(jù)圖像求出交點C的坐標,然后可求三角形的面積;

(3)根據(jù)圖像的位置求出不等式的解集.

試題解析:解:(1)A(a,2)代入y=-2x中,得-2a2,a=-1,A(1,2),把A(1,2)、B(2,0)代入ykxb中得k=-,b,∴一次函數(shù)的解析式是y=-x; 

(2)設(shè)直線ABy軸交于點C,則C(0,),SABC××1; 

(3)不等式(k2)xb≥0可以變形為kxb≥2x,結(jié)合圖象得到解集為:x≥1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一個邊長分別為68、10的直角三角形,請設(shè)計出一個有一條邊長為8的直角三角形,使這兩個直角三角形能夠拼成一個等腰三角形.

1)畫出4種不同拼法(周長不等)的等腰三角形;

2)分別求出4種不同拼法的等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知DE,F分別在△ABC的邊BCAB,AC上,且DEAF,DEAF,將FD延長至G,使FG2DF,連接AG,則ED,AG互相平分嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2且∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們,我們曾經(jīng)研究過n×n的正方形網(wǎng)格,得到了網(wǎng)格中正方形的總數(shù)的表達式為12+22+32+…+n2 . 但n為100時,應(yīng)如何計算正方形的具體個數(shù)呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經(jīng)知道0×1+1×2+2×3+…+(n﹣l)×n
= n(n+1)(n﹣1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+(

(2)歸納結(jié)論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n﹣l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n﹣1)×n
=()+[]
=+
= ×
(3)實踐應(yīng)用:
通過以上探究過程,我們就可以算出當n為100時,正方形網(wǎng)格中正方形的總個數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,CACB,CDCEACBDCEα,ADBE相交于點M,連接CM.

(1)求證:BEAD

(2)用含α的式子表示∠AMB的度數(shù);

(3)α90°時,取AD,BE的中點分別為點P,Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,最適合采用普查方式的是( 。

A. 對太原市民知曉“中國夢”內(nèi)涵情況的調(diào)查

B. 對全班同學1分鐘仰臥起坐成績的調(diào)查

C. 對2018年央視春節(jié)聯(lián)歡晚會收視率的調(diào)查

D. 對2017年全國快遞包裹產(chǎn)生的包裝垃圾數(shù)量的調(diào)查

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)化簡:
(2)解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖E在△ABC的邊AC上,且∠AEB=∠ABC.

⑴求證:∠ABE=∠C;

⑵若∠BAE的平分線AFBEF,F(xiàn)D∥BCACD,設(shè)AB=5,AC=8,求DC的長.

查看答案和解析>>

同步練習冊答案