【題目】如圖,AB=AC,CD⊥AB于點(diǎn)D,點(diǎn)O是∠BAC的平分線上一點(diǎn),⊙O與AB相切于點(diǎn)M,與CD相切于點(diǎn)N
(1)求證:∠AOC=135°;
(2)若NC=3,BC=2,求DM的長.
【答案】(1)∠AOC=135°;(2)DM=1.
【解析】
(1)如圖,作OE⊥AC于E,連接OM,ON,由切線的性質(zhì)可得OM⊥AB,ON⊥CD,由角平分線的性質(zhì)可得OM=OE,從而得AC是⊙O的切線,繼而可得OC平分∠ACD,繼而通過推導(dǎo)即可證得∠AOC=135°;
(2)由切線長定理可得AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,AM=AE=y,則有BD=3﹣x,在Rt△BDC中,利用勾股定理進(jìn)行求解即可.
(1)如圖,作OE⊥AC于E,連接OM,ON,
∵⊙O與AB相切于點(diǎn)M,與CD相切于點(diǎn)N,
∴OM⊥AB,ON⊥CD,
∵OA平分∠BAC,OE⊥AC,
∴OM=OE,
∴AC是⊙O的切線,
∵ON=OE,ON⊥CD,OE⊥AC,
∴OC平分∠ACD,
∵CD⊥AB,
∴∠ADC=∠BDC=90°,
∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.
(2)∵AD,CD,AC是⊙O的切線,M,N,E是切點(diǎn),
∴AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,AM=AE=y,
∵AB=AC,
∴BD=3﹣x,
在Rt△BDC中,∵BC2=BD2+CD2,
∴20=(3﹣x)2+(3+x)2,
∵x>0,
∴x=1,
∴DM=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c 與 x 軸的一個(gè)交點(diǎn)為(m,0).
(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對(duì)稱軸;
(2)若 m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x=2時(shí),y的值;(2)當(dāng)1<x≤4時(shí),y的取值范圍;(3)當(dāng)1≤y<4時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=2 002x+2 003,b=2 002x+2 004,c=2 002x+2 005,則多項(xiàng)式a2+b2+c2-ab-bc-ca的值為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的切線,A為切點(diǎn),AC是⊙O的弦,過O作OH⊥AC于點(diǎn)H.若OH=3,AB=8,BO=10.求:
(1)⊙O的半徑;
(2)弦AC的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某汽車在路面上朝正東方向勻速行駛,在A處觀測到樓H在北偏東60°方向上,行駛1小時(shí)后到達(dá)B處,此時(shí)觀測到樓H在北偏東30°方向上,那么該車?yán)^續(xù)行駛( )分鐘可使汽車到達(dá)離樓H距離最近的位置.
A.60 B.30 C.15 D.45
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點(diǎn)C在第二象限,BC與y軸交于點(diǎn)D(0,c),若y軸平分∠BAC,則點(diǎn)C的坐標(biāo)不能表示為( )
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是太陽能電池板支撐架的截面圖,其中AB=300cm,AB的傾斜角為30°,BE=CA=50cm,FE⊥AB于點(diǎn)E.點(diǎn)D、F到地面的垂直距離均為30cm,點(diǎn)A到地面的垂直距離為50cm.求CD和EF的長度各是多少cm(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com