【題目】如圖,ABACCDAB于點(diǎn)D,點(diǎn)O是∠BAC的平分線上一點(diǎn),⊙OAB相切于點(diǎn)M,與CD相切于點(diǎn)N

(1)求證:∠AOC135°;

(2)NC3BC2,求DM的長.

【答案】(1)AOC=135°;(2)DM=1.

【解析】

(1)如圖,作OEACE,連接OM,ON,由切線的性質(zhì)可得OMABONCD,由角平分線的性質(zhì)可得OM=OE,從而得AC是⊙O的切線,繼而可得OC平分∠ACD,繼而通過推導(dǎo)即可證得∠AOC=135°;

(2)由切線長定理可得AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,AM=AE=y,則有BD=3x,在RtBDC中,利用勾股定理進(jìn)行求解即可.

(1)如圖,作OEACE,連接OMON,

∵⊙OAB相切于點(diǎn)M,與CD相切于點(diǎn)N

OMAB,ONCD

OA平分∠BAC,OEAC

OM=OE,

AC是⊙O的切線,

ON=OE,ONCD,OEAC

OC平分∠ACD,

CDAB,

∴∠ADC=BDC=90°,

∴∠AOC=180°(DAC+ACD)=180°45°=135°

(2)AD,CD,AC是⊙O的切線,M,N,E是切點(diǎn),

AM=AE,DM=DN,CN=CE=3,設(shè)DM=DN=x,AM=AE=y,

AB=AC

BD=3x,

RtBDC中,∵BC2=BD2+CD2,

20=(3x)2+(3+x)2

x>0,

x=1,

DM=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c x 軸的一個(gè)交點(diǎn)為(m,0).

(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對(duì)稱軸;

(2) m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x2時(shí),y的值;(2)當(dāng)1x≤4時(shí),y的取值范圍;(3)當(dāng)1≤y4時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2 002x2 003b2 002x2 004,c2 002x2 005,則多項(xiàng)式a2b2c2abbcca的值為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的切線,A為切點(diǎn),AC⊙O的弦,過OOHAC于點(diǎn)H.若OH3,AB8,BO10.求:

(1)⊙O的半徑;

(2)AC的長(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某汽車在路面上朝正東方向勻速行駛,在A處觀測到樓H在北偏東60°方向上,行駛1小時(shí)后到達(dá)B處,此時(shí)觀測到樓H在北偏東30°方向上,那么該車?yán)^續(xù)行駛( )分鐘可使汽車到達(dá)離樓H距離最近的位置.

A.60 B.30 C.15 D.45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點(diǎn)C在第二象限,BCy軸交于點(diǎn)D(0,c),若y軸平分∠BAC,則點(diǎn)C的坐標(biāo)不能表示為(  )

A. (b+2a,2b) B. (﹣b﹣2c,2b)

C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是太陽能電池板支撐架的截面圖,其中AB300cm,AB的傾斜角為30°,BECA50cm,FEAB于點(diǎn)E.點(diǎn)D、F到地面的垂直距離均為30cm,點(diǎn)A到地面的垂直距離為50cm.求CDEF的長度各是多少cm(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)(1,n),y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對(duì)于任意實(shí)數(shù)m,a+bam2+bm總成立;關(guān)于x的方程ax2+bx+cn﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案