【題目】同學(xué)們已經(jīng)學(xué)過用尺規(guī)作一條線段等于已知線段、作一個角等于已知角.請同學(xué)們看下面一個尺規(guī)作圖的例子:

①以O為圓心,任意長為半徑作弧線交∠AOB的兩邊OA、OB分別于C、D兩點;

②以C為圓心,大于CD的長為半徑作弧線,再以D為圓心,同樣的長為半徑作弧線,兩弧線交于P點;

③以O為端點作射線OP.

OP就是∠AOB的平分線

你知道OP為什么是∠AOB的角平分線嗎?請用你所學(xué)的知識解釋.

【答案】見解析

【解析】

根據(jù)作圖方法可知,證明△OCP≌△ODP,由全等三角形的性質(zhì)可得∠COP=DOP,從而結(jié)論得證.

連接CP,DP,

根據(jù)作法得到OC=OD,CP=DP,

OP=OP,

∴△OCP≌△ODP (SSS),

∴∠COP=DOP,

OP是∠AOB的角平分線.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示一輛汽車在行駛途中的速度v(千米/時)隨時間t(分)的變化示意圖:

(1)從點A到點B、點E到點F、點G到點H分別表明汽車在什么狀態(tài)?

(2)分段描述汽車在第0分種到第28分鐘的行駛情況;

(3)汽車在點A的速度是多少?在點C呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為中垂三角形,例如圖1,圖2,圖3中,AF,BEABC的中線,AFBE,垂足為P,像ABC這樣的三角形均為中垂三角形,設(shè)BC=a,AC﹣b,AB=c

【特例探索】

1)如圖1,當(dāng)∠ABE=45°,c=2時,a=   ,b=   ;如圖2,當(dāng)∠ABE=30°,c=4時,a=   b=   ;

【歸納證明】

2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,請利用圖3證明你發(fā)現(xiàn)的關(guān)系式;

【拓展應(yīng)用】

3)如圖4,在ABCD中,點E,F,G分別是ADBC,CD的中點,BEEG,AD=2,AB=3.求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩地相距,甲、乙二人分別騎自行車和摩托車沿相同路線勻速行駛,由地到達地.他們行駛的路程與甲出發(fā)后的時間之間的函數(shù)圖像如圖所示.

1)乙比甲晚出發(fā)幾小時?乙比甲早到幾小時?

2)分別寫出甲、乙行駛的路程與甲出發(fā)后的時間的函數(shù)關(guān)系式(不寫自變量的取值范圍)

3)乙在甲出發(fā)后幾小時追上甲?追上甲的地點離地有多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有若勾三,股四,則弦五的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗證勾股定理.圖2是把圖1放入長方形內(nèi)得到的,,AB=3,AC=4,點DE,F,GH,I都在長方形KLMJ的邊上,則長方形KLMJ的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整

EFAD,(   

∴∠2=   .(兩直線平行,同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】善于思考的小鑫同學(xué),在一次數(shù)學(xué)活動中,將一副直角三角板如圖放置,,,在同一直線上,且,,,量得,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標(biāo)是(  )

A. 2018,1B. 2018,0C. 2019,2 D. 2019,1

查看答案和解析>>

同步練習(xí)冊答案