【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為,吊臂底部A距地面參考數(shù)據(jù)

當?shù)醣鄣撞?/span>A與貨物的水平距離AC5m時,吊臂AB的長為______計算結果精確到

如果該吊車吊臂的最大長度AD20m,那么從地面上吊起貨物的最大高度是多少?吊鉤的長度與貨物的高度忽略不計

【答案】1;(2)如果該吊車吊臂的最大長度AD20m,那么從地面上吊起貨物的最大高度是

【解析】

1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)(在RtABC中,∠C=90°,∠A的余弦是它的鄰邊比三角形的斜邊,即cosA=,也可寫為cosa=)解答即可;

2)過點DDH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.

解:中,

,,

;

故答案為:

過點D地面于H,交水平線于點E,

中,

,,,

,

,

答:如果該吊車吊臂的最大長度AD20m,那么從地面上吊起貨物的最大高度是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系xOy中,直線yaxm+k稱為拋物線yaxm2+k的關聯(lián)直線.

1)求拋物線yx2+6x1的關聯(lián)直線;

2)已知拋物線yax2+bx+c與它的關聯(lián)直線y2x+3都經(jīng)過y軸上同一點,求這條拋物線的表達式;

3)如圖,頂點在第一象限的拋物線y=﹣ax12+4a與它的關聯(lián)直線交于點A,B(點A在點B的左側),與x軸負半軸交于點C,連結AC、BC.當ABC為直角三角形時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點,ABx軸于B,且SABO=

(1)直接寫出這兩個函數(shù)的關系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知二次函數(shù)y=ax22ax3aa0)圖象與x軸交于點AB(點A在點B的左側),與y軸交于點C,頂點為D

1)求點A,B的坐標;

2)若M為對稱軸與x軸交點,且DM=2AM

求二次函數(shù)解析式;

t2xt時,二次函數(shù)有最大值5,求t值;

若直線x=4與此拋物線交于點E,將拋物線在CE之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店去年8月底購進了一批文具1160件,預計在9月份進行試銷.購進價格為每件10元.若售價為12/件,則可全部售出.若每漲價0.1元.銷售量就減少2件.

1)求該文具店在9月份銷售量不低于1100件,則售價應不高于多少元?

2)由于銷量好,10月份該文具進價比8月底的進價每件增加20%,該店主增加了進貨量,并加強了宣傳力度,結果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價比9月份在(1)的條件下的最高售價減少m%.結果10月份利潤達到3388元,求m的值(m10).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對稱軸為直線x=﹣1,圖象經(jīng)過B(﹣3,0)、C0,3)兩點,且與x軸交于點A

1)求二次函數(shù)yax2+bx+ca≠0)的表達式;

2)在拋物線的對稱軸上找一點M,使ACM周長最短,求出點M的坐標;

3)若點P為拋物線對稱軸上的一個動點,直接寫出使BPC為直角三角形時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點PCD中點,BP與半圓交于點Q,連接給出如下結論:;其中正確的結論是______填寫序號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以A為圓心,以任意長為半徑畫弧,分別交ACAB于點M、N,再分別以點M、N為圓心,以大于MN的長為半徑畫弧,兩弧相交于點P,作射線APBC于點D,若AC=4BC=3,則CD的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利民商場經(jīng)營某種品牌的T恤,購進時的單價是300元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是400元時,銷售量是60件,銷售單價每漲10元,銷售量就減少1件.設這種T恤的銷售單價為x元(x400)時,銷售量為y件、銷售利潤為W元.

1)請分別用含x的代數(shù)式表示yW(把結果填入下表):

銷售單價(元)

x

銷售量y(件)

銷售利潤W(元)

2)該商場計劃實現(xiàn)銷售利潤10000元,并盡可能增加銷售量,那么x的值應當是多少?

查看答案和解析>>

同步練習冊答案