【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連接給出如下結(jié)論:;;;其中正確的結(jié)論是______填寫序號
【答案】
【解析】
①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;
②連接AQ,如圖2,根據(jù)勾股定理可求出BP.易證Rt△AQB∽Rt△BCP,運(yùn)用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到 的值;
③過點(diǎn)Q作QH⊥DC于H,如圖3.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求出QH,從而可求出S△DPQ的值;
④根據(jù)圖1和①中的結(jié)論可作判斷.
①連接OQ,OD,如圖1.
易證四邊形DOBP是平行四邊形,從而可得DO∥BP,
∴∠AOD=∠OBP,∠DOQ=∠OQB,
∵OB=OQ,
∴∠OBP=∠OQB,
∴∠AOD=∠QOD,從而證到△AOD≌△QOD,
則有DQ=DA=1;
故①正確;
②連接AQ,如圖2.
∵P是CD的中點(diǎn),
∴CP=CD=,BP .
易證Rt△AQB∽Rt△BCP,
∴,即,
∴BQ=,
則PQ=BP﹣BQ=﹣=,
∴= ;
故②正確;
③過點(diǎn)Q作QH⊥DC于H,如圖3.
易證△PHQ∽△PCB,
∴ ,即
∴QH= ,
∴S△DPQ=DPQH=.
故③錯(cuò)誤;
④如圖1,由①知:△AOD≌△QOD,
∴∠ADQ=2∠ODQ,
∵OD∥PB,
∴∠ODQ=∠DQP,
∴∠ADQ=2∠DQP,
故④正確,
綜上所述:正確結(jié)論是①②④.
故答案為:①②④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=的圖象上,PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)P在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①△ODB與△OCA的面積相等;②四邊形PAOB的面積不會(huì)發(fā)生變化;③PA與PB始終相等;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).其中一定正確的是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作”四門創(chuàng)客課程,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計(jì)圖表.
最受歡理的創(chuàng)客課程詞查問卷
你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(gè)(只能選擇一個(gè))你最喜歡的課程選項(xiàng)在其后空格內(nèi)打“√“,非常感謝你的合作.
請根據(jù)圖表中提供的值息回答下列問題:
(1)統(tǒng)計(jì)表中的a= ,b= ;
(2)“D”對應(yīng)扇形的圓心角為 ;
(3)根據(jù)調(diào)查結(jié)果,請你估計(jì)該校2000名學(xué)生中最喜歡“數(shù)學(xué)編程”創(chuàng)客課程的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為,吊臂底部A距地面參考數(shù)據(jù),,.
當(dāng)?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時(shí),吊臂AB的長為______計(jì)算結(jié)果精確到;
如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?吊鉤的長度與貨物的高度忽略不計(jì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,高高的路燈掛在學(xué)校操場旁邊上方,高傲而明亮.王剛同學(xué)拿起一根長的竹竿去測量路燈的高度,他走到路燈旁的一個(gè)地方,點(diǎn)豎起竹竿(表示),這時(shí)他量了一下竹竿的影長正好是,他沿著影子的方向走,向遠(yuǎn)處走出兩個(gè)竹竿的長度(即)到點(diǎn),他又豎起竹竿(表示),這時(shí)竹竿的影長正好是一根竹竿的長度(即),此時(shí),王剛同學(xué)抬頭若有所思地說道:“噢,原來路燈有高呀”.你覺得王剛同學(xué)的判斷對嗎?若對,請給出解答,若不對,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線W:y=x-4x+2的頂點(diǎn)為A,與x軸交于點(diǎn)B、C.
(1)求∠ABC的正切值;
(2)若點(diǎn)P是拋物線W上的一點(diǎn),過P作直線PQ垂直x軸,將拋物線W關(guān)于直線PQ對稱,得到拋物線Wˊ,設(shè)拋物線Wˊ的頂點(diǎn)Aˊ,問:是否存在這樣的點(diǎn)P,使得△APAˊ為直角三角形?若存在,求出對稱所得的拋物線Wˊ的表達(dá)式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com