【題目】某文具店第一次用1600元購進(jìn)了一批新型文具試銷,很快賣完,于是第二次又用5000元購進(jìn)了這款文具,但第二次的進(jìn)價是第一次進(jìn)價的1.25倍,購進(jìn)數(shù)量比第一次多300件.
(1)求該文具店第一次購進(jìn)這款文具的進(jìn)價;
(2)已知該文具店將第一次購進(jìn)的這款文具按50%的利潤率定價銷售完后,第二次購進(jìn)的這款文具售價在原來售價的基礎(chǔ)上增加5a%,銷售了第二次購進(jìn)的這款文具的12a%,剩下的這款文具9折處理,銷售一空,結(jié)果該文具店前后兩次銷售這款文具共獲利3000元,求a的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標(biāo);
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將四根長度相等的細(xì)木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動這個四邊形,使它形狀改變,當(dāng)∠B=90°時,如圖1,測得AC=2,當(dāng)∠B=60°時,如圖2,則BD=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應(yīng)點記為A1;AD的中點E的對應(yīng)點記為E1.若△E1FA1∽△E1BF,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當(dāng)∠CAB的度數(shù)為________時,四邊形ACFD是菱形.
【答案】30°
【解析】(1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
(2)根據(jù)三角形的內(nèi)角和得到∠F=30°,根據(jù)等腰三角形的性質(zhì)得到AC=CF,連接AD,根據(jù)平行線的性質(zhì)得到∠DAF=∠F=30°,根據(jù)全等三角形的性質(zhì)得到AD=AC,由菱形的判定定理即可得到結(jié)論.
答:
(1)證明:連結(jié)OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)當(dāng)∠CAB的度數(shù)為30°時,四邊形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
連接AD,
∵AB是⊙O的直徑,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB與△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四邊形ACFD是菱形。
故答案為:30°.
【題型】解答題
【結(jié)束】
22
【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,其中A型凈水器每臺的利潤為400元,B型凈水器每臺的利潤為500元.該公司計劃再一次性購進(jìn)兩種型號的凈水器共100臺,其中B型凈水器的進(jìn)貨量不超過A型凈水器的2倍,設(shè)購進(jìn)A型凈水器x臺,這100臺凈水器的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該公司購進(jìn)A型、B型凈水器各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進(jìn)貨時,廠家對A型凈水器出廠價下調(diào)a(0<a<150)元,且限定公司最多購進(jìn)A型凈水器60臺,若公司保持同種凈水器的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺凈水器銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com