【題目】如圖,拋物線,經(jīng)過(guò)點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)M的坐標(biāo);
(2)連接AC、BC,N為拋物線上的點(diǎn)且在第一象限,當(dāng)時(shí),求N點(diǎn)的坐標(biāo);
(3)我們通常用表示整數(shù)的最大公約數(shù),例如. 若,則稱a、b互素,關(guān)于最大公約數(shù)有幾個(gè)簡(jiǎn)單的性質(zhì):①,其中k為任意整數(shù);②; 若點(diǎn)滿足:a,b均為正整數(shù),且,則稱Q點(diǎn)為“互素正整點(diǎn)”,當(dāng)時(shí),該拋物線上有多少個(gè)“互素正整點(diǎn)”?
【答案】(1)拋物線的頂點(diǎn)M坐標(biāo)為;(2)N(4,5);(3)在時(shí),該拋物線上有65個(gè)“互素正整點(diǎn)”
【解析】
(1)將A、B、C三點(diǎn)坐標(biāo)代入中即可得到答案;
(2)設(shè),求得直線NC的解析式為y=(t-2)x-3,設(shè)設(shè)直線CN與x軸交于點(diǎn)D,求出點(diǎn)D的坐標(biāo),根據(jù)即可列式計(jì)算得出點(diǎn)N的坐標(biāo);
(3)拋物線上的任意正整點(diǎn)R(橫縱坐標(biāo)為正整數(shù)的點(diǎn))可以表示為,得到,找到符合條件的值即可得到答案.
(1)∵拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(3,0),C(0,-3),
解得:,
∴=,
拋物線的頂點(diǎn)M坐標(biāo)為;
(2)∵N是拋物線上第一象限的點(diǎn),
∴設(shè)(t>0),又點(diǎn)C(0,-3),
設(shè)直線NC的解析式為,N在直線NC上,
解得k=t-2
∴直線NC的解析式為y=(t-2)x-3,
設(shè)直線CN與x軸交于點(diǎn)D,
當(dāng)y=0時(shí),x=,
∴D(,0),BD=3﹣,
∵S△NBC=S△ABC,
∴S△CDB+S△BDN=ABOC,即BD|yC﹣yN|= [3﹣(﹣1)]×3,
即×(3﹣)[3﹣(﹣t2+2t+3)]=6,
整理,得:t2﹣3t﹣4=0,
解得:t1=4,t2=﹣1(舍去),
當(dāng)t=4時(shí),t2-2t-3=5,
∴N(4,5);
(3)拋物線上的任意正整點(diǎn)R(橫縱坐標(biāo)為正整數(shù)的點(diǎn))可以表示為:
,t為正整數(shù),且,
由性質(zhì)①②,t與的最大公約數(shù),
,
即只需滿足即可,又因?yàn)?/span>3是素?cái)?shù),當(dāng)且僅當(dāng)t不是3的倍數(shù)時(shí),t與3互素,
在4到100共97個(gè)數(shù)中,總共有32個(gè)數(shù)是3的倍數(shù),
故共有65個(gè)數(shù)不是3的倍數(shù),滿足,
即在時(shí),該拋物線上有65個(gè)“互素正整點(diǎn)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
(3)在坐標(biāo)軸上,是否存在點(diǎn)N,滿足△BCN為直角三角形?如存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長(zhǎng)CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AH⊥CE,垂足為點(diǎn)H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求證:CD=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交于點(diǎn)E,連接AD,BC,已知AE=AD,∠BAD=34°.
(1)如圖①,連接CO,求∠ADC和∠OCD的大小;
(2)如圖②,過(guò)點(diǎn)D作⊙O的切線與CB的延長(zhǎng)線交于點(diǎn)F,連接BD,求∠BDF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,圓柱底面半徑為,高為,點(diǎn)分別是圓柱兩底面圓周上的點(diǎn),且、在同一母線上,用一棉線從順著圓柱側(cè)面繞3圈到,求棉線最短為_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是角平分線,是中線,于點(diǎn)G,交于點(diǎn)F,交于點(diǎn)M,的延長(zhǎng)線交于點(diǎn)H.
(1)圖中與線段相等的線段是________;
(2)求證:點(diǎn)H為線段的中點(diǎn);
(3)若,探究線段與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的頂點(diǎn)A、B分別在x軸,y軸上,,且的面積為8.
直接寫出A、B兩點(diǎn)的坐標(biāo);
過(guò)點(diǎn)A、B的拋物線G與x軸的另一個(gè)交點(diǎn)為點(diǎn)C.
若是以BC為腰的等腰三角形,求此時(shí)拋物線的解析式;
將拋物線G向下平移4個(gè)單位后,恰好與直線AB只有一個(gè)交點(diǎn)N,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我校舉行的小科技創(chuàng)新發(fā)明比賽中,共有60人獲獎(jiǎng),組委會(huì)原計(jì)劃按照一等獎(jiǎng)5人,二等獎(jiǎng)15人,三等獎(jiǎng)40人進(jìn)行獎(jiǎng)勵(lì).后來(lái)經(jīng)學(xué)校研究決定,在該項(xiàng)獎(jiǎng)勵(lì)總獎(jiǎng)金不變的情況下,各等級(jí)獲獎(jiǎng)人數(shù)實(shí)際調(diào)整為:一等獎(jiǎng)10人,二等獎(jiǎng)20人,三等獎(jiǎng)30人,調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金降低80元,二等獎(jiǎng)每人獎(jiǎng)金降低50元,三等獎(jiǎng)每人獎(jiǎng)金降低30元,調(diào)整前二等獎(jiǎng)每人獎(jiǎng)金比三等獎(jiǎng)每人獎(jiǎng)金多70元,則調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金比二等獎(jiǎng)每人獎(jiǎng)金多____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN 交 AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com