【題目】如圖,拋物線y=﹣x2+bx+c過等腰Rt△OAB的A,B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直角頂點(diǎn)A(0,3).
(1)求b,c的值.
(2)P是AB上方拋物線上的一點(diǎn),作PQ⊥AB交OB于點(diǎn)Q,連接AP,是否存在點(diǎn)P,使四邊形APQO是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形
【解析】
(1)根據(jù)題意得到點(diǎn)B的坐標(biāo),把A,B的坐標(biāo)代入二次函數(shù)解析式,列出關(guān)于系數(shù)b、c的方程組,通過解方程組可以求得它們的值;
(2)由條件可知OA∥PQ,則PQ=3時(shí),OAPQ為平行四邊形,設(shè)P(m,-m2+3m+3),Q(m,m),可得關(guān)于m的方程,求出m的值即可求解.
解:(1)∵A(0,3),等腰Rt△OAB,
∴AB=3=OA,
∴B(3,3),
將點(diǎn)A、B的坐標(biāo)代入y=﹣x2+bx+c得:
,
∴,
(2)存在,
∵B(3,3),
∴OB的解析式為y=x,
∵y=﹣x2+3x+3,
設(shè)P(m,﹣m2+3m+3),Q(m,m),
∵PQ⊥AB,OA⊥AB,
∴OA∥PQ,
若四邊形APQO是平行四邊形,
∴PQ=﹣m2+3m+3﹣m=3,
解得m=0(舍去),m=2,
當(dāng)m=2時(shí),y=﹣4+6+3=5,
∴p(2,5),
即當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形.
故答案為:(1);(2)當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為,E,F分別是AB,BC的中點(diǎn),AF與DE,DB分別交于點(diǎn)M,N,則△DMN的面積= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣bx.
(1)若此拋物線與直線y=x只有一個(gè)公共點(diǎn),且向右平移1個(gè)單位長度后,剛好過點(diǎn)(3,0).
①求此拋物線的解析式;
②以y軸上的點(diǎn)P(0,n)為中心,作該拋物線關(guān)于點(diǎn)P對(duì)稱的拋物線y',若這兩條拋物線有公共點(diǎn),求n的取值范圍;
(2)若a>0,將此拋物線向上平移c個(gè)單位(c>0),當(dāng)x=c時(shí),y=0;當(dāng)0<x<c時(shí),y>0.試比較ac與1的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A(﹣1,n)、B(2,﹣1)兩點(diǎn),與y軸相交于點(diǎn)C,BD垂直于y軸于點(diǎn)D.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)求△ABD的面積;
(3)若M(x,y)、N(x,y)是反比例函數(shù)y=上的兩點(diǎn),當(dāng)x<x<0時(shí),直接寫出y與y的大小關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖以正五邊形ABCDE的頂點(diǎn)A為圓心,AE為半徑作圓弧交BA的延長線于點(diǎn)A′,再以點(diǎn)B為圓心,BA′為半徑作圓弧交CB的延長線于B′,依次進(jìn)行.得到螺旋線,再順次連結(jié)EA′,AB′,BC′,CD′,DE′,得到5塊陰影區(qū)域,若記它們的面積分別為S1,S2,S3,S4,S5,且滿足S5﹣S2=1,則S4﹣S3的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc<0;②2a﹣b<0;③b2>(a+c)2;④點(diǎn)(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請(qǐng)你在圖中畫出旗桿在同一時(shí)刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請(qǐng)求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“魅”、“力”、“宜”、“昌”的四個(gè)個(gè)球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,球上的漢字剛好是“宜”的概率為多少?
(2)甲同學(xué)從中任取一球,記下漢字后放回袋中,然后再從袋中任取一球,請(qǐng)用畫樹圖成列表的方法求出甲同學(xué)取出的兩個(gè)球上的漢字恰能組成“魅力”或“宜昌”的概率p甲;
(3)乙同學(xué)從中任取一球,不放回,再從袋中任取一球,請(qǐng)求出乙同學(xué)取出的兩個(gè)球上的漢字恰能組成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com