【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc<0;②2a﹣b<0;③b2>(a+c)2;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)社團小組想利用所學(xué)的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點D的仰角為60°,在A處測得點C的仰角為30°,AB=10m,且A、B、H三點在一條直線上,請根據(jù)以上數(shù)據(jù)計算GH的長(=1.73,要求結(jié)果精確得到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象如圖所示,則下列說法①;②;③當(dāng)時,;④當(dāng)時,;⑤關(guān)于的一元二次方程有兩個不相等的實數(shù)根.你認(rèn)為其中正確的有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點坐標(biāo)、對稱軸.
求出它的圖象與坐標(biāo)軸的交點坐標(biāo).
在直角坐標(biāo)系中,畫出它的圖象.
根據(jù)圖象說明:當(dāng)為何值時,;當(dāng)為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點,點M在這條拋物線上,點P在y軸上,如果四邊形ABMP是平行四邊形,則點M的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點為A(﹣1,0),B(0,3),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
⑴如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
⑵設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標(biāo)及面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖像與的圖像交于點A、B,A點的坐標(biāo)是(,-2)
(1)求反比例函數(shù)解析式;
(2)求點B的坐標(biāo);
(3)在y軸上是否存在點C,使得△ABC的面積是6,若存在,求點C的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是( )
A. ∠ACD=∠DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com