【題目】如圖,在ABCD中,各內(nèi)角的平分線(xiàn)分別相交于點(diǎn)E,F(xiàn),G,H.
(1)求證:△ABG≌△CDE;
(2)猜一猜:四邊形EFGH是什么樣的特殊四邊形?證明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
【答案】
(1)證明:∵GA平分∠BAD,EC平分∠BCD,
∴∠BAG= ∠BAD,∠DCE= ∠DCB,
∵ABCD中,∠BAD=∠DCB,AB=CD,
∴∠BAG=∠DCE,
同理可得,∠ABG=∠CDE,
∵在△ABG和△CDE中,
,
∴△ABG≌△CDE(ASA);
(2)解:四邊形EFGH是矩形.
證明:∵GA平分∠BAD,GB平分∠ABC,
∴∠GAB= ∠BAD,∠GBA= ∠ABC,
∵ABCD中,∠DAB+∠ABC=180°,
∴∠GAB+∠GBA= (∠DAB+∠ABC)=90°,
即∠AGB=90°,
同理可得,∠DEC=90°,∠AHD=90°=∠EHG,
∴四邊形EFGH是矩形;
(3)解:依題意得,∠BAG= ∠BAD=30°,
∵AB=6,
∴BG= AB=3,AG=3 =CE,
∵BC=4,∠BCF= ∠BCD=30°,
∴BF= BC=2,CF=2 ,
∴EF=3 ﹣2 = ,GF=3﹣2=1,
∴矩形EFGH的面積=EF×GF= .
【解析】(1)利用平行四邊形的對(duì)角、對(duì)邊相等性質(zhì),運(yùn)用角邊角證出全等;(2)平行四邊形的一組鄰角是同旁?xún)?nèi)角,兩角平分線(xiàn)互相垂直,可得四邊形EFGH是矩形;(3)要求矩形EFGH的面積,可求EF、FG,須求BF、CF,在Rt△BCF中可求出BF、CF.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長(zhǎng)為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O是正方形ABCD對(duì)角線(xiàn)BD的中點(diǎn).
(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過(guò)點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.
①∠AEM=∠FEM; ②點(diǎn)F是AB的中點(diǎn);
(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使 = = ,請(qǐng)判斷△EFC的形狀,并說(shuō)明理由;
(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過(guò)E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng) = 時(shí),請(qǐng)猜想 的值(請(qǐng)直接寫(xiě)出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分.
(1)圖中∠AOC的對(duì)頂角為________,∠BOE的補(bǔ)角為________;
(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起,若∠DCE=35°,則∠ACB=_____;若∠ACB=140°,則∠DCE=_______;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說(shuō)明理由;
(3)如圖2,若是兩個(gè)同樣的直角三角尺60°銳角的頂點(diǎn)A重合在一起,則∠DAB與∠CAE的大小又有何關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且與EF交于點(diǎn)O,那么與∠AOE相等的角有( )
A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2 ,∠BAC=120°,點(diǎn)D,E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是( 。
A. 4nB. 4mC. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O在直線(xiàn)MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=則∠BON=_______(用含有的式子表示);
(3)將∠AOB繞著點(diǎn)O順時(shí)針轉(zhuǎn)到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com