【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點(diǎn)C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點(diǎn)M是x軸上的點(diǎn),且使得點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小,求點(diǎn)的坐標(biāo).
【答案】(1)y=2x; (2);(3)點(diǎn)M的坐標(biāo)為(,0).
【解析】
(1)先求出點(diǎn)A的坐標(biāo),然后設(shè)直線AO的解析式為y=kx,用待定系數(shù)法求解即可;
(2)由面積法求出BD的長(zhǎng),從而求出點(diǎn)D的坐標(biāo),然后帶入y=-x+b求解即可;
(3)先求出點(diǎn)C的坐標(biāo),作點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)E,此時(shí)M到A、C的距離之和最小,求出直線AE的解析式,即可求出點(diǎn)M的坐標(biāo).
(1)OB=4,AB=8,∠ABO=90°,
∴A點(diǎn)坐標(biāo)為(4,8),
設(shè)直線AO的解析式為y=kx,則4k=8 ,
解得k=2,即直線AO的解析式為y=2x;
(2)OB=4,∠ABO=90°,=4,
∴DB=2,∴D點(diǎn)的坐標(biāo)為(4,2),
把D(4,2)代入得:=6,
∴直線CD的解析式為;
(3)由直線與直線組成方程組為,
解得:,
∴點(diǎn)C的坐標(biāo)為(2,4)
如圖,設(shè)點(diǎn)M使得MC+MA最小,作點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)E,可得點(diǎn)E的坐標(biāo)為(2,-4),連結(jié)MC、ME、AE,可知MC=ME,所以M到A、C的距離之和MA+MC=MA+ME,又MA+ME大于等于AE,所以當(dāng)MA+ME=AE時(shí),M到A、C的距離之和最小,此時(shí)A、M、E成一條直線,M點(diǎn)是直線AE與在x軸的交點(diǎn).
所以設(shè)直線AE的解析式為,把A(4,8)和E(2,-4)代入得:
,
解得: ,
所以直線AE的解析式為,令得,
所以點(diǎn)M的坐標(biāo)為(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫(xiě)出DE、BF、BP三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣2(2﹣k)x+k2+12=0有實(shí)數(shù)根α、β.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè),求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE=2∠COE.若∠DOE=36°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下面三行數(shù)
3,9,27,81…①
1,3,9,27…②
2,10,26,82…③
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系?
(3)設(shè)x,y,z分別為第①②③ 行的2019個(gè)數(shù),求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試,面試中包括形體、口才、專(zhuān)業(yè)知識(shí),他們的成績(jī)(百分制)如下表:
(1)如果公司根據(jù)經(jīng)營(yíng)性質(zhì)和崗位要求,以面試成績(jī)中形體、口才、專(zhuān)業(yè)知識(shí)按照的比值確定成績(jī),請(qǐng)計(jì)算甲、乙兩人各自的平均成績(jī),看看誰(shuí)將被錄?
(2)如果公司根據(jù)經(jīng)營(yíng)性質(zhì)和崗位要求,以面試成績(jī)中形體占,口才占,專(zhuān)業(yè)知識(shí)占確定成績(jī),那么你認(rèn)為該公司應(yīng)該錄取誰(shuí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A、C,拋物線y=-x2+bx+c過(guò)點(diǎn)A、C,且與x軸交于另一點(diǎn)B,在第一象限的拋物線上任取一點(diǎn)D,分別連接CD、AD,作于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC外接圓,直徑AB=12,∠A=2∠B.
(1)∠A= °,∠B= °;
(2)求BC的長(zhǎng)(結(jié)果用根號(hào)表示);
(3)連接OC并延長(zhǎng)到點(diǎn)P,使CP=OC,連接PA,畫(huà)出圖形,求證:PA是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com