【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點DAB的中點,DE⊥BC,垂足為點E,連接CD

1)如圖1,DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BFBP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DEBF、BP三者之間的數(shù)量關(guān)系.

【答案】解:(1DE=BC。

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;

3)補全圖形如圖,DE、BF、BP三者之間的數(shù)量關(guān)系為BF﹣BP=DE。

【解析】試題分析:(1)由∠ACB=90°∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BCDE=BC;

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;

3)與(2)的證明方法一樣得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,則BF﹣BP=BC,所以BF﹣BP=DE

解:(1∵∠ACB=90°,∠A=30°,

∴∠B=60°,

DAB的中點,

∴DB=DC,

∴△DCB為等邊三角形,

∵DE⊥BC,

∴DE=BC

故答案為DE=BC

2BF+BP=DE.理由如下:

線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,

∴∠PDF=60°DP=DF

∠CDB=60°,

∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,

∴∠CDP=∠BDF,

△DCP△DBF

,

∴△DCP≌△DBFSAS),

∴CP=BF,

CP=BC﹣BP,

∴BF+BP=BC,

∵DE=BC,

∴BC=DE,

∴BF+BP=DE;

3)如圖,

與(2)一樣可證明△DCP≌△DBF,

∴CP=BF,

CP=BC+BP,

∴BF﹣BP=BC,

∴BF﹣BP=DE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2﹣4=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三線段,能組成等腰三角形的是( )

A. 11,2 B. 2,25 C. 3,3,5 D. 34,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)有一個角是60°的菱形繞它的中心旋轉(zhuǎn),使它與原來的菱形重合,那么旋轉(zhuǎn)的角度至少是

A90° B180° C270° D360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-32的值是( )
A.-9
B.9
C.-6
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面中,O為坐標(biāo)原點,二次函數(shù)y=x2+bx+c的圖象與x軸的負(fù)半軸相交于點C(如圖),點C的坐標(biāo)為(0,﹣3),且BO=CO

(1)求這個二次函數(shù)的解析式;

(2)設(shè)這個二次函數(shù)的圖象的頂點為M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將點A行向右平移3個單位長度,再向下平移5個單位長度,得到 ;將點B先向下平移5個單位長度,再向右平移3個單位長度,得到 ;則 相距( )
A.4個單位長度
B.5個單位長度
C.6個單位長度
D.7個單位長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校教師假期外出考察4天,已知這四天的日期之和是38,那么這四天的日期分別是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中正確的是(
A.aa2=a2
B.2aa=2a2
C.(2a22=2a4
D.6a8÷3a2=3a4

查看答案和解析>>

同步練習(xí)冊答案