分析 只要證明△AEC≌△DEB得AC=BD,即可求解.
解答 解:四邊形ABCD是矩形.
理由:∵AE⊥EC,BE⊥ED,
∴∠AEC=∠BED=90°,
在△AEC和△DEB中,
$\left\{\begin{array}{l}{AE=DE}\\{∠AEC=∠BED}\\{EC=BE}\end{array}\right.$,
∴△AEC≌△DEB,
∴AC=BD,
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形.
點(diǎn)評(píng) 本題考查矩形的判定、全等三角形的判定和性質(zhì),熟練掌握全矩形的判定方法是解題的關(guān)鍵,記住矩形的三種判定方法:有一個(gè)角是直角的平行四邊形是矩形,對(duì)角線(xiàn)相等的平行四邊形是矩形,有三個(gè)角是直角的四邊形是矩形,屬于參考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1+$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | -2+2$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com