【題目】如圖1,兩個(gè)全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點(diǎn)B和點(diǎn)D重合,點(diǎn)F在BC上,將△DEF沿射線BC平移,設(shè)平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時(shí),函數(shù)的解析式不同)
(1)填空:BC的長(zhǎng)為_____;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
【答案】(1)4;(2)y=.
【解析】試題分析:
(1)結(jié)合圖1、圖2分析可知,當(dāng)x=4時(shí),y=0,說(shuō)明此時(shí),點(diǎn)B運(yùn)動(dòng)到了點(diǎn)C,兩三角形五重疊部分,從而可得BC=4;
(2)分析圖1、圖2中的信息可知:當(dāng)DE經(jīng)過(guò)點(diǎn)A時(shí)(如圖3),BD=x=3,CD=1,通過(guò)證△ADC∽△BAC可求得AC=2=DF;分析圖1、圖2可知當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)(如圖4),BD=x=m=BC-DF=4-2=2;這樣可得:三段函數(shù)對(duì)應(yīng)的自變量的取值范圍分別是:①;②;③;按照這三段自變量的取值范圍參照?qǐng)D5、如6、圖7結(jié)合已知條件分析即可求得對(duì)應(yīng)的函數(shù)關(guān)系式,最好綜合即可.
試題解析:
(1)由圖2得當(dāng)x=4時(shí),y=0,說(shuō)明此時(shí)△DEF與△ABC無(wú)重合部分,
則點(diǎn)D從B到C運(yùn)動(dòng)的距離為4,即BC=4;
(2)如圖3,當(dāng)DE經(jīng)過(guò)點(diǎn)A時(shí),由圖2中的信息可知,此時(shí)BD=x=3,CD=BC-BD=1,
∵△ABC≌△DEF.
∴∠EDF=∠BAC.
∵∠ACD=∠BCA
∴△ADC∽△BAC.
∴,即.解得:AC=2,
∴DF=AC=2.
分析圖1、圖2可知當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)(如圖4),BD=x=m=BC-DF=4-2=2.
∴三段函數(shù)對(duì)應(yīng)的自變量的取值范圍分別是:①;②;③;
①當(dāng)0≤x≤2時(shí)(如圖5),
設(shè)ED、EF與AB分別相交于點(diǎn)M,G,作MN⊥BC,垂足為N.
則∠MNB=90°=∠EFD=∠C.
∵∠MDN=∠EDF.
∴△DMN∽△DEF.
∴,即.
∴MN=2DN.
設(shè)DN=n,則MN=2n.
同理△BMN∽△BAC.
∴.即,
∴BN=4n,即x+n=4n.
∴n=x.
∴S△BDM=BDMN=
同理△BGF∽△BAC
∴,即.
∴GF= (x+2),
∴y=S△BGF﹣S△BDM=(x+2)×(x+2)-=﹣x2+x+1.
②當(dāng)2<x≤3時(shí)(如圖6),
由①知,S△BDM=x2.
∴y=S△ABC﹣S△BDM=×2×4-x2=﹣x2+4
③當(dāng)3<x≤4時(shí)(如圖7),
設(shè)DE與AB相交于點(diǎn)H,則:△DHC∽△DEF.
∴,即
∴HC=24﹣x.
∴y==x2﹣8x+16,
綜上所述,可得y關(guān)于x的函數(shù)關(guān)系式為:
y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接DE,點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,連接EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過(guò)點(diǎn)E作EH⊥DE交DG的延長(zhǎng)線于點(diǎn)H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用無(wú)刻度直尺作圖并解答問(wèn)題:
如圖,和都是等邊三角形,在內(nèi)部做一點(diǎn),使得,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B(a,b)在第一象限,過(guò)B作BA⊥y軸于A,過(guò)B作BC⊥x軸于C,且實(shí)數(shù)a、b滿足(a-b-2)2+|2a+b-10|≤0,含45角的Rt△DEF的一條直角邊DF與x軸重合,DE⊥x軸于D,點(diǎn)F與坐標(biāo)原點(diǎn)重合,DE=DF=3.△DEF從某時(shí)刻開(kāi)始沿著坐標(biāo)軸以1個(gè)單位長(zhǎng)度每秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)B的坐標(biāo);
(2)若△DEF沿著y軸負(fù)方向運(yùn)動(dòng),連接AE,EG平分∠AEF,EH平分∠AED,當(dāng)EG∥DF時(shí),求∠HEF的度數(shù);
(3)若△DEF沿著x軸正方向運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,記△AEF與長(zhǎng)方形OABC重疊部分的面積為S,當(dāng)0<t≤4,S=時(shí),請(qǐng)你求出運(yùn)動(dòng)時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形的頂點(diǎn)在軸上,,且,交軸于,
(1)求點(diǎn)的坐標(biāo);
(2)連接,求的面積;
(3)在軸上有一動(dòng)點(diǎn),當(dāng)的值最小時(shí),求此時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在上,于點(diǎn),的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅和小明在操場(chǎng)做游戲,他們先在地上畫(huà)了半徑分別2m和3m的同心圓(如圖),蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,否則小明勝,未擲入圈內(nèi)不算,你來(lái)當(dāng)裁判.
(1)你認(rèn)為游戲公平嗎?為什么?
(2)游戲結(jié)束,小明邊走邊想,“反過(guò)來(lái),能否用頻率估計(jì)概率的方法,來(lái)估算某一不規(guī)則圖形的面積呢”.請(qǐng)你設(shè)計(jì)方案,解決這一問(wèn)題.(要求補(bǔ)充完整圖形,說(shuō)明設(shè)計(jì)步驟、原理,寫(xiě)出估算公式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市政公司為綠化建設(shè)路風(fēng)景帶,計(jì)劃購(gòu)買(mǎi)甲乙兩種樹(shù)苗600株,甲種樹(shù)苗每株50元,乙種樹(shù)苗每株70元.有關(guān)統(tǒng)計(jì)表明,甲乙兩種樹(shù)苗的成活率分別為80%和95%.(注:成活率=×100%).
(1)若購(gòu)買(mǎi)樹(shù)苗的錢(qián)不超過(guò)40000元,應(yīng)如何選購(gòu)甲、乙兩種樹(shù)苗;
(2)若希望這批樹(shù)苗的成活率不低于90%,且購(gòu)買(mǎi)樹(shù)苗的費(fèi)用最低,應(yīng)如何選購(gòu)甲、乙兩種樹(shù)苗并求出最低費(fèi)用是多少元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com