【題目】如圖,在中,,點(diǎn)在上,于點(diǎn),的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )
A.B.C.D.
【答案】A
【解析】
由題意中點(diǎn)E的位置即可對(duì)A項(xiàng)進(jìn)行判斷;
過點(diǎn)A作AG⊥BC于點(diǎn)G,如圖,由等腰三角形的性質(zhì)可得∠1=∠2=,易得ED∥AG,然后根據(jù)平行線的性質(zhì)即可判斷B項(xiàng);
根據(jù)平行線的性質(zhì)和等腰三角形的判定即可判斷C項(xiàng);
由直角三角形的性質(zhì)并結(jié)合∠1=的結(jié)論即可判斷D項(xiàng),進(jìn)而可得答案.
解:A、由于點(diǎn)在上,點(diǎn)E不一定是AC中點(diǎn),所以不一定相等,所以本選項(xiàng)結(jié)論錯(cuò)誤,符合題意;
B、過點(diǎn)A作AG⊥BC于點(diǎn)G,如圖,∵AB=AC,∴∠1=∠2=,
∵,∴ED∥AG,∴,所以本選項(xiàng)結(jié)論正確,不符合題意;
C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴,所以本選項(xiàng)結(jié)論正確,不符合題意;
D、∵AG⊥BC,∴∠1+∠B=90°,即,所以本選項(xiàng)結(jié)論正確,不符合題意.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1) 觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2) 若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn),與直線交于點(diǎn)是線段上的動(dòng)點(diǎn),連接,若是等腰三角形,則的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,兩個(gè)全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點(diǎn)B和點(diǎn)D重合,點(diǎn)F在BC上,將△DEF沿射線BC平移,設(shè)平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時(shí),函數(shù)的解析式不同)
(1)填空:BC的長(zhǎng)為_____;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)課外活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹正前方一樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處測(cè)得樹頂端D的仰角為60°,已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度i=1:2,且B,C,E三點(diǎn)在同一條直線上,請(qǐng)根據(jù)以上條件求出樹DE的高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BP是⊙O的弦,弦CD⊥AB于點(diǎn)F,交BP于點(diǎn)G,E在CD的延長(zhǎng)線上,EP=EG,
(1)求證:直線EP為⊙O的切線;
(2)點(diǎn)P在劣弧AC上運(yùn)動(dòng),其他條件不變,若BG2=BFBO.試證明BG=PG;
(3)在滿足(2)的條件下,已知⊙O的半徑為3,sinB=.求弦CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA,OC,AC
(1)求∠OCA的度數(shù) (2)如果OEAC于F,且OC=, 求AC的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠BAE與∠BCD互為補(bǔ)角,AB=AE,CB=CD,連接ED,點(diǎn)P為ED的中點(diǎn).
(1)如圖1,若點(diǎn)A,B,C三點(diǎn)在同一條直線上.
①求證:∠EBD=90°;②求證:AP∥BD;
(2)如圖2,若點(diǎn)A,B,C三點(diǎn)不在同一條直線上,求證:AP⊥CP.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com