【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形的頂點(diǎn)在軸上,,且,交軸于,
(1)求點(diǎn)的坐標(biāo);
(2)連接,求的面積;
(3)在軸上有一動(dòng)點(diǎn),當(dāng)的值最小時(shí),求此時(shí)的坐標(biāo).
【答案】(1)C的坐標(biāo)是(-1,1);(2);(3)P(1,0)
【解析】
(1)作CD⊥x軸于D,BE⊥x軸于E,利用三角形全等的判定定理AAS證明△CDA≌△AEB,即可CD=AE,AD=BE,已知A(2,0)、B(3,3),即可求出C點(diǎn)坐標(biāo).
(2)已知B(3,3),C(-1,1)可求出直線BC的解析式,M點(diǎn)坐標(biāo),根據(jù)各點(diǎn)坐標(biāo),S四邊形OMBE-S△OMA-S△BEA即可求解.
(3)作M關(guān)于x軸的對(duì)稱點(diǎn) (0,-1.5),連接BM’,交x軸于P,此時(shí)PB+PM的值最小,
可求得直線B的解析式,即可求出P點(diǎn)坐標(biāo).
(1)如圖,作CD⊥x軸于D,BE⊥x軸于E,
∵AB=AC,∠BAC=90°
∴∠CAD+∠BAE=90°,
∵作CD⊥x軸于D,
∴∠CAD+∠DCA=90°,
∴∠BAE=∠DCA
∵∠CDA=∠AEB=90°,AC=AB
∴△CDA≌△AEB(AAS),
∴CD=AE,AD=BE
∵A(2,0)、B(3,3),
∴OA=2,OE=BE=3,
∴CD=AE=1,AD=BE=3,
∴OD=AD-OA=1
∴C的坐標(biāo)是(-1,1)
故答案為:(-1,1)
(2)∵B(3,3),C(-1,1)
設(shè)直線BC的解析式為y=kx+b
則
解得
∴直線BC的解析式為
令x=0
y=
∴
∴OM=
∵S四邊形OMBE-S△OMA-S△BEA=
故答案為:
(3)如圖,作M關(guān)于x軸的對(duì)稱點(diǎn) (0,-1.5),連接BM’,交x軸于P,此時(shí)PB+PM的值最小,
設(shè)直線B的解析式為y=kx+b,得
解得
∴
∵點(diǎn)P在x軸上,
∴當(dāng)y=0時(shí),x=1
∴P(1,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、D在直線l的同側(cè).
(1)如圖1,在直線l上找一點(diǎn)C.使得線段AC+DC最。ㄕ(qǐng)通過(guò)畫(huà)圖指出點(diǎn)C的位置);
(2)如圖2,在直線l上取兩點(diǎn)B、E,恰好能使△ABC和△DCE均為等邊三角形.M、N分別是線段AC、BC上的動(dòng)點(diǎn),連結(jié)DN交AC于點(diǎn)G,連結(jié)EM交CD于點(diǎn)F.
①當(dāng)點(diǎn)M、N分別是AC、BC的中點(diǎn)時(shí),判斷線段EM與DN的數(shù)量關(guān)系,并說(shuō)明理由;
②如圖3,若點(diǎn)M、N分別從點(diǎn)A和B開(kāi)始沿AC和BC以相同的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)M、N與點(diǎn)C重合時(shí)運(yùn)動(dòng)停止,判斷在運(yùn)動(dòng)過(guò)程中線段GF與直線1的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.
(1)在方程①3x-1=0;②x+1=0;③x-(3x+1)=-5中,不等式組關(guān)聯(lián)方程是______(填序號(hào)).
(2)若不等式組的一個(gè)關(guān)聯(lián)方程的根是整數(shù),則這個(gè)關(guān)聯(lián)方程可以是______(寫(xiě)出一個(gè)即可).
(3)若方程9-x=2x,3+x=2(x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,試求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,兩個(gè)全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點(diǎn)B和點(diǎn)D重合,點(diǎn)F在BC上,將△DEF沿射線BC平移,設(shè)平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時(shí),函數(shù)的解析式不同)
(1)填空:BC的長(zhǎng)為_____;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥DC,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F是OD上一點(diǎn),且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠BOC比∠DFE大20,求∠OFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)課外活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)正前方一樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處測(cè)得樹(shù)頂端D的仰角為60°,已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度i=1:2,且B,C,E三點(diǎn)在同一條直線上,請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東方專賣店專銷某種品牌的鋼筆,進(jìn)價(jià)12元/支,售價(jià)20元/支.為了促銷,專賣店決定凡是買10支以上的,每多買一支,售價(jià)就降低0.10元(例如,某人買20支鋼筆,于是每只降價(jià)0.10×(20﹣10)=1元,就可以按19元/支的價(jià)格購(gòu)買),但是最低價(jià)為16元/支.
(1)求顧客一次至少買多少支,才能以最低價(jià)購(gòu)買?
(2)寫(xiě)出當(dāng)一次購(gòu)買x支時(shí)(x>10),利潤(rùn)y(元)與購(gòu)買量x(支)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了46支,另一位顧客買了50支,專實(shí)店發(fā)現(xiàn)賣了50支反而比賣46支賺的錢(qián)少,為了使每次賣的多賺錢(qián)也多,在其他促銷條件不變的情況下,最低價(jià)16元/支至少要提高到多少,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com