【題目】擲一枚質地均勻的正方形骰子,骰子的六面分別標有1到6的點數(shù),那么擲兩次的點數(shù)之和等于5的概率是___________

【答案】

【解析】分析:

通過列表,得到所有等可能結果,由此即可求得所求概率.

詳解

根據題意,將兩次拋擲骰子產生的情況列表如下

1

2

3

4

5

6

1

1+1=2

1+2=3

1+3=4

1+4=5

1+5=6

1+6=7

2

2+1=3

2+2=4

2+3=5

2+4=6

2+5=7

2+6=8

3

3+1=4

3+2=5

3+3=6

3+4=7

3+5=8

3+6=9

4

4+1=5

4+2=6

4+3=7

4+4=8

4+5=9

4+6=10

5

5+1=6

5+2=7

5+4=9

5+5=10

5+6=11

6

6+1=7

6+2=8

6+3=9

6+4=10

6+5=11

6+6=12

由表中數(shù)據可知,共有36個等可能結果出現(xiàn),其中和為5的有4次,

∴P(擲兩次點數(shù)之和為5)=.

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,分別是兩棵樹及其影子的情形

1)哪個圖反映了陽光下的情形?哪個圖反映了路燈下的情形.

2)請畫出圖中表示小麗影長的線段.

3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(定義新知)在數(shù)軸上,點M和點N分別表示數(shù)x1x2 ,可以用絕對值表示點M、N兩點間的距離d (MN),即d (M,N)|x1x2|

(初步應用)

1)在數(shù)軸上,點AB、C分別表示數(shù)-12、x 解答下列問題:

d (A,B) ;

②若d(A,C)2,則x的值為 ;

③若d(AC)d(B,C)d(AB),且x為整數(shù),則x的取值有 個.

(綜合應用)

2)在數(shù)軸上,點DE、F分別表示數(shù)-2、4、6.動點P沿數(shù)軸從點D開始運動,到達F點后立刻返回,再回到D點時停止運動.在此過程中,點P的運動速度始終保持每秒2個單位長度.設點P的運動時間為t秒.

①當t 時,d(D,P)3;

②在整個運動過程中,請用含t的代數(shù)式表示d(E,P)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1

1)求∠2∠3的度數(shù);

2)求長方形紙片ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;燃油效率越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中正確的是( )

A. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

B. 以低于80 km/h的速度行駛時,行駛相同路程,三輛車中,乙車消耗汽油最少

C. 以高于80 km/h的速度行駛時行駛相同路程,丙車比乙車省油

D. 80 km/h的速度行駛時行駛100公里,甲車消耗的汽油量約為10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,AB=9,cosB=,把ABC繞著點C旋轉,使點B與AB邊上的點D重合,點A落在點E,則點A、E之間的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用如圖4×4方格,每個小正方形的邊長都為

1)請求出圖1中陰影正方形的面積與邊長;

2)請在圖2中畫出一個與圖1中陰影部分面積不相等的正方形,要求它的邊長為無理數(shù),并求出它的邊長;

3)把分別表示圖1與圖2中的正方形的邊長的實數(shù)在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要測量一幢樓CD的高度,在地面上A點測得樓CD的頂部C的仰角為30°,向樓前進50m到達B點,又測得點C的仰角為60°. 求這幢樓CD的高度(結果保留根號).

【答案】該幢樓CD的高度為25m .

【解析】試題分析:根據題意得出的度數(shù),進而求出,進而利用求出即可.

試題解析:依題意,有

中, (m)

該幢樓CD的高度為25m .

型】解答
束】
23

【題目】如圖,正方形ABCD中,EBD上一點,AE的延長線交CDF,交BC的延長線于GMFG的中點.

1)求證:① 1=2 ECMC.

2)試問當∠1等于多少度時,ECG為等腰三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)的圖象經過點(3,-6)

(1)求這個函數(shù)的表達式;

(2)在如圖所示的直角坐標系中畫出這個函數(shù)的圖象;

(3)判斷點A(4,-2)、B(1.5,3)是否在這個函數(shù)的圖象上.

查看答案和解析>>

同步練習冊答案