【題目】如圖(1)是一種簡(jiǎn)易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計(jì)),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長(zhǎng)為40cm,燈管DE長(zhǎng)為15cm.

(1)求DE與水平桌面(AB所在直線)所成的角;

(2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).

(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)

【答案】(1)15°;(2)45.5cm.

【解析】

(1)直接作出平行線和垂線進(jìn)而得出∠EDF的值;

(2)利用銳角三角函數(shù)關(guān)系得出DN以及EF的值,進(jìn)而得出答案.

(1)如圖所示:過(guò)點(diǎn)D作DF∥AB,過(guò)點(diǎn)D作DN⊥AB于點(diǎn)N,EF⊥AB于點(diǎn)M,

由題意可得,四邊形DNMF是矩形,

則∠NDF=90°,

∵∠A=60°,∠AND=90°,

∴∠ADN=30°,

∴∠EDF=135°﹣90°﹣30°=15°,

即DE與水平桌面(AB所在直線)所成的角為15°;

(2)如圖所示:∵∠ACB=90°,∠A=60°,AB=16cm,

∴∠ABC=30°,則AC=AB=8cm,

∵燈桿CD長(zhǎng)為40cm,

∴AD=48cm,

∴DN=ADsin60°=24cm,

則FM=24cm,

∵燈管DE長(zhǎng)為15cm,

∴sin15°===0.26,

解得:EF=3.9,

故臺(tái)燈的高為:3.9+24≈45.5(cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線yax2+bx+ca≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(15)且與x軸的一個(gè)交點(diǎn)在(3,0)和(40)之間,則下列結(jié)論:①ab+c0;②2a+b0;③b24ac0;④一元二次方程ax2+bx+c5有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,AD是高,AM是△ABC外角∠CAE的平分線.以點(diǎn)D為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交DA于點(diǎn)G,交DC于點(diǎn)H.再分別以點(diǎn)G、H為圓心,大于GH的長(zhǎng)為半徑畫(huà)弧,兩弧在∠ADC內(nèi)部交于點(diǎn)Q,連接DQ并延長(zhǎng)與AM交于點(diǎn)F,則△ADF的形狀是(  )

A.等腰三角形B.等邊三角形

C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高農(nóng)田利用效益,某地由每年種植雙季稻改為先養(yǎng)殖小龍蝦再種植一季水稻的“蝦稻”輪作模式.某農(nóng)戶(hù)有農(nóng)田20畝,去年開(kāi)始實(shí)施“蝦稻”輪作,去年出售小龍蝦每千克獲得的利潤(rùn)為32(利潤(rùn)=售價(jià)﹣成本).由于開(kāi)發(fā)成本下降和市場(chǎng)供求關(guān)系變化,今年每千克小龍蝦的養(yǎng)殖成本下降25%,售價(jià)下降10%,出售小龍蝦每千克獲得利潤(rùn)為30元.

(1)求去年每千克小龍蝦的養(yǎng)殖成本與售價(jià);

(2)該農(nóng)戶(hù)今年每畝農(nóng)田收獲小龍蝦100千克,若今年的水稻種植成本為600/畝,稻谷售價(jià)為25/千克,該農(nóng)戶(hù)估計(jì)今年可獲得“蝦稻”輪作收入不少于8萬(wàn)元,則稻谷的畝產(chǎn)量至少會(huì)達(dá)到多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC45°,ADBC于點(diǎn)D,若BD3,CD2.則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)為創(chuàng)建《國(guó)家義務(wù)教育優(yōu)質(zhì)均衡發(fā)展區(qū)》,自2016年以來(lái)加大了教育經(jīng)費(fèi)的投入,2016年該區(qū)投入教育經(jīng)費(fèi)9000萬(wàn)元,2018年投入教育經(jīng)費(fèi)12960萬(wàn)元,假設(shè)該區(qū)這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率相同

1)求這兩年該區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率

2)若該區(qū)教育經(jīng)費(fèi)的投入還將保持相同的年平均增長(zhǎng)率,請(qǐng)你預(yù)算2019年該區(qū)投入教育經(jīng)費(fèi)多少萬(wàn)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐社團(tuán),計(jì)劃利用長(zhǎng)的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個(gè)矩形試驗(yàn)田,墻的長(zhǎng)度為.

1)能否圍成總面積為的試驗(yàn)田?若能,求出的長(zhǎng)度;若不能,說(shuō)明理由;

2)能否圍成總面積為的試驗(yàn)田?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l與⊙O相離,OAl于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.

(1)求證:AB=AC;

(2)若,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

118﹣(﹣30).

2

3

4

5)﹣22×7﹣(﹣3)×6+5

6

查看答案和解析>>

同步練習(xí)冊(cè)答案