【題目】如圖,∠MON內(nèi)有一點P,P點關(guān)于OM的軸對稱點是G,P點關(guān)于ON的軸對稱點是H,GH分別交OM、ON于A、B點.若GH的長為10cm,求△PAB的周長為(
A.5cm
B.10cm
C.20cm
D.15cm

【答案】B
【解析】解:連結(jié)PG、PH,如圖,
∵P點關(guān)于OM的軸對稱點是G,P點關(guān)于ON的軸對稱點是H,
∴OM垂直平分PG,ON垂直平分PH,
∴AP=AG,BP=BH,
∴△PAB的周長=AP+AB+BP
=AG+AB+BH
=GH
=10cm.
故選B.
連結(jié)PG、PH,如圖,根據(jù)軸對稱的性質(zhì)得OM垂直平分PG,ON垂直平分PH,則根據(jù)線段垂直平分線的性質(zhì)得AP=AG,BP=BH,于是利用等線段代換可得△PAB的周長=GH=10cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:

5(3x-1)=2(4x+2)-1①,

15x-5=8x+4-1②,

15x-8x=4-1+5③

7x④,

x=

老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯誤,請指出他的錯步及錯誤原因:   ,方程的正確的解是x   

然后,你自己細心的解下面的方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場打折前,買1A商品和1B商品用了20元,買30A商品和40B商品用了680元.打折后,買100A商品100B商品用了1800元.請根據(jù)上述信息解決下列問題:

(1)打折前A、B兩種商品的單價分別是多少?

(2)請在(1)的基礎(chǔ)上提出一個能使題目剩余條件解決的問題,并加以解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時,求出這時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學(xué)式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且SADE= S四邊形BEDC , 則∠A=(
A.75°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)、移動終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機構(gòu)針對“您如何看待數(shù)字化閱讀”問題進行了隨機問卷調(diào)查(如圖1),并將調(diào)查結(jié)果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:
(1)求出本次接受調(diào)查的總?cè)藬?shù),并將條形統(tǒng)計圖補充完整;
(2)表示觀點B的扇形的圓心角度數(shù)為度;
(3)2016年底慈溪人口總數(shù)約為200萬(含外來務(wù)工人員),請根據(jù)圖中信息,估計慈溪市民認同觀點D的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案