【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯(cuò)誤,請指出他的錯(cuò)步及錯(cuò)誤原因: ,方程的正確的解是x= .
然后,你自己細(xì)心的解下面的方程:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若10m=5,10n=3,則102m+3n= .
【答案】675.
【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,
故答案為:675.
點(diǎn)睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運(yùn)算方法,可得102m×103n=(10m)2×(10n)3,最后把10m=5,10n=2代入化簡后的算式,求出102m+3n的值是多少即可.
【題型】填空題
【結(jié)束】
17
【題目】A、B兩地相距450千米,甲、乙兩車分別從A、B兩地同時(shí)出發(fā),相向而行.已知甲車的速度為100千米/時(shí),乙車的速度為80千米/時(shí),___________小時(shí)后兩車相距30千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是由5個(gè)完全相同的正方體搭成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至圖2所示的位置,下列說法中正確的是( )
①左、右兩個(gè)幾何體的主視圖相同
②左、右兩個(gè)幾何體的俯視圖相同
③左、右兩個(gè)幾何體的左視圖相同.
A.①②③
B.②③
C.①②
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,AB=2,現(xiàn)將一塊三角板的直角頂點(diǎn)放在AB的中點(diǎn)D處,兩直角邊分別與直線AC,直線BC相交于點(diǎn)E,F(xiàn),我們把DE⊥AC時(shí)的位置定為起始位置(如圖1),將三角板繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)一個(gè)角度α(0°<α<90°).
(1)如圖2,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E在線段AC上時(shí),試判別△DEF的形狀,并說明理由;
(2)設(shè)直線ED交直線BC于點(diǎn)G,在旋轉(zhuǎn)過程中,是否存在點(diǎn)G,使得△EFG為等腰三角形?若存在,求出CG的長,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)8﹣(﹣2)
(2)1﹣6+(﹣20)﹣(﹣5)
(3)﹣4×(﹣3)2+5×(﹣2)﹣6
(4)(1﹣+)×(﹣48)
(5)﹣22+[(﹣4)2﹣(1﹣3)×3]
(6)(﹣125)÷(﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:三角形一邊的中線與這邊上的高線之比稱為這邊上的中高比.
(1)直接寫出等腰直角三角形腰上的中高比為 .
(2)已知一個(gè)直角三角形一邊上的中高比為5:4,求它的最小內(nèi)角的正切值.
(3)如圖,已知函數(shù)y= (x+4)(x﹣m)與x軸交于A、B兩點(diǎn),與y軸的負(fù)半軸交于點(diǎn)C,對(duì)稱軸與x的正半軸交于點(diǎn)D,若△ABC中AB邊上的中高比為5:4,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由4個(gè)正方體搭成的幾何體按如圖放置,若要求畫出它的三視圖,則在所畫的俯視圖中正方形共有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】景新中學(xué)為了進(jìn)一步豐富學(xué)生的課外閱讀,欲增購一些課外書,為此對(duì)該校一部分學(xué)生進(jìn)行了一次“你最喜歡的書籍”問卷調(diào)查(每人只選一項(xiàng)).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖(不完整):請根據(jù)圖中提供的信息,完成下列問題:
(1)在這次問卷調(diào)查中,喜歡“科普書籍”出現(xiàn)的頻率為;
(2)在扇形統(tǒng)計(jì)圖中,喜歡“體育書籍”的所占的圓心角度數(shù)為;
(3)如果全校共有學(xué)生1500名,請估計(jì)該校最喜歡“科普書籍”的學(xué)生約有人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com