【題目】我市“木蘭溪左岸綠道”工程已全部建成并投入使用,10公里的河堤便道鋪滿了彩色的透水瀝青,堤岸旁的各類花草爭奇斗艷,與木蘭溪河灘上的特色花草相映成趣,吸引著眾多市民在此休閑鍛煉、散步觀光.某小區(qū)隨機調(diào)查了部分居民在一周內(nèi)前往“木蘭溪左岸綠道”鍛煉的次數(shù),并制成如圖不完整的統(tǒng)計圖表:
居民前往“木蘭溪左岸綠道”鍛煉的次數(shù)統(tǒng)計表
鍛煉次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)a= ,b= .
(2)請計算扇形統(tǒng)計圖中“3次”所對應扇形的圓心角的度數(shù);
(3)若該小區(qū)共有2000名居民,根據(jù)調(diào)查結果,估計該小區(qū)居民在一周內(nèi)前往木蘭溪左岸綠道”鍛煉“4次及以上”的人數(shù).
【答案】(1) 17、20;(2) 72°;(3) 120人
【解析】
(1)根據(jù)1次的人數(shù)以及所占的百分比求出參與調(diào)查的人數(shù),用總人數(shù)減去其余的人數(shù)可求出a的值,用3次的人數(shù)除以總人數(shù)即可求得b的值;
(2)用360度乘以3次所占的比例即可得;
(3)用2000乘以”鍛煉“4次及以上”所占的比例即可得.
(1)∵被調(diào)查的總人數(shù)為13÷26%=50人,
∴a=50﹣(7+13+10+3)=17,
b%=×100%=20%,即b=20,
故答案為:17、20;
(2)扇形統(tǒng)計圖中“3次”所對應扇形的圓心角的度數(shù)為360°×20%=72°;
(3)估計一周內(nèi)前往木蘭溪左岸綠道”鍛煉“4次及以上”的人數(shù)2000×=120人.
科目:初中數(shù)學 來源: 題型:
【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點E,過點E作EF⊥BC,垂足為F,延長CD交GB的延長線于點P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知線段和,請在給出的圖形上用尺規(guī)作出,使得:點在射線上,點在射線上,且,;(保留作圖痕跡,不寫作法)
(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(要求:利用(1)中的Rt,畫出斜邊上的中線,寫出已知、求證和證明過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某排球隊6名場上隊員的身高(單位:cm)是:180,184,188,190,192,194.現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員,與換人前相比,場上隊員的身高( )
A. 平均數(shù)變小,中位數(shù)變小
B. 平均數(shù)變小,中位數(shù)變大
C. 平均數(shù)變大,中位數(shù)變小
D. 平均數(shù)變大,中位數(shù)變大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結論有______________.(把所有正確結論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,DA、DC分別切⊙O于點A,C,且AB=AD.
(1)求tan∠AOD的值.
(2)AC,OD交于點E,連結BE.
①求∠AEB的度數(shù);
②連結BD交⊙O于點H,若BC=1,求CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com