【題目】已知:如圖,在四邊形ABCD中,ADBC.點(diǎn)ECD邊上一點(diǎn),AEBE分別為∠DAB和∠CBA的平分線.

(1)請你添加一個適當(dāng)?shù)臈l件   ,使得四邊形ABCD是平行四邊形,并證明你的結(jié)論;

(2)作線段AB的垂直平分線交AB于點(diǎn)O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(3)在(2)的條件下,⊙O交邊AD于點(diǎn)F,連接BF,交AE于點(diǎn)G,若AE=4,sinAGF=,求⊙O的半徑.

【答案】(1)當(dāng)AD=BC時,四邊形ABCD是平行四邊形,理由見解析;(2)作出相應(yīng)的圖形見解析;(3)圓O的半徑為2.5.

【解析】(1)添加條件AD=BC,利用一組對邊平行且相等的四邊形為平行四邊形驗(yàn)證即可;

(2)作出相應(yīng)的圖形,如圖所示;

(3)由平行四邊形的對邊平行得到ADBC平行,可得同旁內(nèi)角互補(bǔ),再由AEBE為角平分線,可得出AEBE垂直,利用直徑所對的圓周角為直角,得到AFFB垂直,可得出兩銳角互余,根據(jù)角平分線性質(zhì)及等量代換得到∠AGF=AEB,根據(jù)sinAGF的值,確定出sinAEB的值,求出AB的長,即可確定出圓的半徑.

(1)當(dāng)AD=BC時,四邊形ABCD是平行四邊形,理由為:

證明:∵ADBC,AD=BC,

∴四邊形ABCD為平行四邊形;

故答案為:AD=BC;

(2)作出相應(yīng)的圖形,如圖所示;

(3)ADBC,

∴∠DAB+CBA=180°,

AEBE分別為∠DAB與∠CBA的平分線,

∴∠EAB+EBA=90°,

∴∠AEB=90°,

AB為圓O的直徑,點(diǎn)F在圓O上,

∴∠AFB=90°,

∴∠FAG+FGA=90°,

AE平分∠DAB,

∴∠FAG=EAB,

∴∠AGF=ABE,

sinABE=sinAGF=,

AE=4,

AB=5,

則圓O的半徑為2.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點(diǎn)C在邊OA上,AC=2,P的圓心P在線段BC上,且P與邊AB,AO都相切若反比例函數(shù))的圖象經(jīng)過圓心P,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若拋物線的頂點(diǎn)與x軸的兩個交點(diǎn)構(gòu)成的三角形是直角三角形,則這種拋物線被稱為:“直角拋物線”.如圖,直線lyx+b經(jīng)過點(diǎn)M(0,),一組拋物線的頂點(diǎn)B1(1y1),B2(2y2),B3(3y3),…Bn(nyn) (n為正整數(shù)),依次是直線l上的點(diǎn),第一個拋物線與x軸正半軸的交點(diǎn)A1(x10)A2(x2,0),第二個拋物線與x軸交點(diǎn)A2(x20)A3(x3,0),以此類推,若x1d(0d1),當(dāng)d_____時,這組拋物線中存在直角拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(m≠0)的圖象經(jīng)過點(diǎn)(1,4),一次函數(shù)y=﹣x+b的圖象經(jīng)過反比例函數(shù)圖象上的點(diǎn)Q(﹣4,n).

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

(2)一次函數(shù)的圖象分別與x軸、y軸交于A、B兩點(diǎn),與反比例函數(shù)圖象的另一個交點(diǎn)為P點(diǎn),連結(jié)OP、OQ,求OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動終端設(shè)備的升級換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A.和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.玩游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)査,得到如圖表(部分信息未給出)

選項(xiàng)

頻數(shù)

百分比

A

10

m

B

n

0.2

C

5

0.1

D

p

0.4

E

5

0.1

根據(jù)以上信息解答下列問題:

(1)這次被調(diào)查的學(xué)生有多少人?

(2)求表中m,n,p的值,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)約有2400名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?并根據(jù)以上調(diào)査結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+2經(jīng)過點(diǎn)A(﹣1,﹣1)和點(diǎn)B3,﹣1).

1)求這條拋物線所對應(yīng)的二次函數(shù)的表達(dá)式.

2)寫出拋物線的開口方向、對稱軸、頂點(diǎn)坐標(biāo)和二次函數(shù)的最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x23x+k0有實(shí)數(shù)根.

1)求k的取值范圍;

2)如果k是符合條件的最大整數(shù),且一元二次方程(m1x2+x+m30與方程x23x+k0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動,點(diǎn)B在數(shù)軸上所表示的數(shù)為m

1)當(dāng)半圓D與數(shù)軸相切時,m 

2)半圓D與數(shù)軸有兩個公共點(diǎn),設(shè)另一個公共點(diǎn)是C

直接寫出m的取值范圍是 

當(dāng)BC2時,求△AOB與半圓D的公共部分的面積.

3)當(dāng)△AOB的內(nèi)心、外心與某一個頂點(diǎn)在同一條直線上時,求tanAOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,把△ABCA點(diǎn)沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F

1)求證:△AEC≌△ADB;(2)若AB2,∠BAC45°,當(dāng)四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案