【題目】如圖,拋物線經(jīng)過點,交y 軸于點C:
(1)求拋物線的頂點坐標.
(2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標;若不存在請說明理由.
(3)將直線繞點順時針旋轉(zhuǎn),與拋物線交于另一點,求直線的解析式.
【答案】(1),頂點坐標為();(2);(3)
【解析】
(1)由A、B的坐標,利用待定系數(shù)法可求得拋物線解析式;
(2)由條件可求得點D到x軸的距離,即可求得D點的縱坐標,代入拋物線解析式可求得D點坐標;
(3)由勾股定理的逆定理可證得BC⊥AC,設直線AC和BE交于點F,過F作FM⊥x軸于點M,則可得BF=BC,利用相似三角形的性質(zhì)可求得F點的坐標,利用待定系數(shù)法可求得直線BE解析式.
(1)由題意得
解得:
∴
∴ 頂點坐標為()
(2)存在,
由題意可知C(0,2),A(-1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=ABOC=×5×2=5,
∵S△ABC=S△ABD,
∴S△ABD=×5=,
設D(x,y),
∴AB|y|=×5|y|=,解得|y|=3,
當y=3時,由-x2+x+2=3,解得x=1或x=2,此時D點坐標為(1,3)或(2,3);
當y=-3時,由-x2+x+2=-3,解得x=-2或x=5,此時D點坐標為(-2,-3)或(5,
綜上可知存在滿足條件的點D,其坐標為(1,3)或(2,3)或(-2,-3)或(5,-3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC= ,BC=
∴AC2+BC2=25=AB2,
∴△ABC為直角三角形,即BC⊥AC.
設直線AC與直線BE交于點F,過F作FM⊥x軸于點M,如圖所示.
由題意可知∠FBC=45°,
∴∠CFB=45°,
∴CF=BC=2
∵OC∥MF,
∴△AOC∽△AMF,
∴
∴AM=3AO=3,MF=3OC=6,
∴點F(2,6).
設直線BE的解析式為y=kx+m(k≠0),
則 ,解得: ,
∴直線BE的解析式為y=-3x+12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=3,AC=5,點D為線段AC上一動點,將線段BD繞點D逆時針旋轉(zhuǎn)90°,點B的對應點為E,連接AE,則AE長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖像經(jīng)過點,與軸相交于點,與軸相交于點,二次函數(shù)的圖像經(jīng)過點和點,頂點為,對稱軸與一次函數(shù)的圖像相交于點。
(1)求一次函數(shù)的解析式以及點,點的坐標;
(2)求頂點的坐標;
(3)在軸上求一點,使得和相似。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=6,AC=8.動點E,F同時分別從點A,B出發(fā),分別沿著射線AC和射線BC的方向均以每秒1個單位的速度運動,連接EF,以EF為直徑作⊙O交射線BC于點M,連接EM,設運動的時間為t(t>0).
(1)當點E在線段AC上時,用關于t的代數(shù)式表示CE= ,CM= .(直接寫出結(jié)果)
(2)在整個運動過程中,當t為何值時,以點E、F、M為頂點的三角形與以點A、B、C為頂點的三角形相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在∠ABC中,∠ABC=90°,tan∠BAC=.
(1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為M、N,若點B恰好是線段MN的中點,求tan∠BAM的值;
(2)如圖2,P是邊BC延長線上一點,∠APB=∠BAC,求tan∠PAC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點E,F在△ABC內(nèi),頂點D,G分別在AB,AC上,AD=AG,DG=6,則點F到BC的距離為( )
A.1B.2C.12﹣6D.6﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,E、F分別是邊AB、BC上的動點,且EF=6,M為EF中點,P是邊AD上的一個動點,則CP+PM的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com