【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長稱為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車停放點(diǎn),且滿足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為( )
A. (1,﹣2)B. (2,﹣1)C. (,﹣1)D. (3.0)
【答案】A
【解析】
若設(shè)M(x,y),構(gòu)建方程組即可解決問題.
設(shè)M(x,y),由“實(shí)際距離”的定義可知:
點(diǎn)M只能在ECFG區(qū)域內(nèi),
﹣1<x<5,﹣5<y<1,
又∵M到A,B,C距離相等,
∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①
∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②
要將|x﹣3|與|y+3|中絕對值去掉,
需要判斷x在3的左側(cè)和右側(cè),以及y在﹣3的上側(cè)還是下側(cè),
將矩形ECFG分割為4部分,若要使M到A,B,C的距離相等,
由圖可知M只能在矩形AENK中,
故x<3,y>﹣3,
則方程可變?yōu)椋?/span>3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,
解得,x=1,y=﹣2,則M(1,﹣2)
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線()與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),該拋物線的頂點(diǎn)的縱坐標(biāo)是.
(1)求點(diǎn)、的坐標(biāo);
(2)設(shè)直線與直線關(guān)于該拋物線的對稱軸對稱,求直線的表達(dá)式;
(3)平行于軸的直線與拋物線交于點(diǎn)、,與直線交于點(diǎn).若,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM=( 。
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了科學(xué)建設(shè)“學(xué)生健康成長工程”.隨機(jī)抽取了部分學(xué)生家庭對其家長進(jìn)行了主題為“周末孩子在家您關(guān)心嗎?”的問卷調(diào)查,將回收的問卷進(jìn)行分析整理,得到了如下的樣本統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
代號 | 情況分類 | 家庭數(shù) |
帶孩子玩并且關(guān)心其作業(yè)完成情況 | 16 | |
只關(guān)心其作業(yè)完成情況 | b | |
只帶孩子玩 | 8 | |
既不帶孩子玩也不關(guān)心其作業(yè)完成情況 | d |
(1)求的值;
(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在類家庭中抽取家長組成培訓(xùn)班,其比例為類取20%,類各取60%,請你估計(jì)該培訓(xùn)班的家庭數(shù);
(3)若在類家庭中只有一個(gè)城鎮(zhèn)家庭,其余是農(nóng)村家庭,請用列舉法求出在類中隨機(jī)抽出2個(gè)家庭進(jìn)行深度采訪,其中有一個(gè)是城鎮(zhèn)家庭的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測得點(diǎn)B和點(diǎn)C的仰角分別是45°和65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5米.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OC垂直于弦AB,垂足為點(diǎn)D,點(diǎn)E在OC的延長線上,∠EAC=∠BAC
(1)求證:AE是⊙O的切線;
(2)若AB=8,cosE=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點(diǎn)F,C是⊙O上兩點(diǎn),連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點(diǎn)C作CD⊥AF交AF的延長線于點(diǎn)D,垂足為點(diǎn)D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2011年高中招生考試,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中所給信息,下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,表示成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角是 72 度;
(3)學(xué)校九年級共有1000人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com