【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證D是BC的中點;
(2)如果AB=AC,試判斷四邊形AFBD是什么四邊形,并證明你的結論.
【答案】(1)、證明過程見解析;(2)、矩形;證明過程見解析.
【解析】
試題分析:(1)、根據(jù)AF∥BD得出∠AFE=∠DCE,根據(jù)E是中點得出AE=DE,結合∠AEF=∠DEC得出△AEF和△EDC全等,從而得出DC=AF,根據(jù)AF=BD得出BD=DC,即中點;(2)、根據(jù)AF=BD以及AF∥BD得出四邊形為平行四邊形,根據(jù)AB=AC,D為BC的中點得出AD⊥BC,從而說明矩形.
試題解析:(1)、∵AF∥BD,∴∠AFE=∠DCE. ∵E是AD的中點,∴AE=DE.
又∵∠AEF=∠DEC,∴△AEF≌△DEC(AAS).∴DC=AF. 又∵AF=BD,∴BD=DC. ∴D是BC的中點
(2)、四邊形AFBD是矩形.
∵AF=BD,AF∥BD, ∴四邊形AFBD是平行四邊形. ∵AB=AC,D是BC的中點,
∴AD⊥BC,∴∠ADB=90°. ∴四邊形AFBD是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】
①1是絕對值最小的數(shù);
②0既不是正數(shù),也不是負數(shù);
③一個有理數(shù)不是整數(shù)就是分數(shù);
④0的絕對值是0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內且與AB、AD均相切.現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動;⊙O在矩形內部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).
(1)如圖①,點P從A→B→C→D,全程共移動了 cm(用含a、b的代數(shù)式表示);
(2)如圖①,已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點.若點P與⊙O的移動速度相等,求在這5s時間內圓心O移動的距離;
(3)如圖②,已知a=20,b=10.是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象相交于點A(a,3),且與x軸相交于點B.
(1)求該反比例函數(shù)的表達式;
(2)若P為y軸上的點,且△AOP的面積是△AOB的面積的,請求出點P的坐標.
(3)寫出直線向下平移2個單位的直線解析式,并求出這條直線與雙曲線的交點坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩個數(shù)的和為正數(shù),則這兩個數(shù)( )
A. 至少有一個為正數(shù) B. 只有一個是正數(shù)
C. 有一個必為零 D. 都是正數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加快推進教育現(xiàn)代化,某中學計劃分批購買部分A品牌電腦和B品牌課桌.下表是前兩次購買的情況:
A品牌電腦的數(shù)量 (單位:臺) | B品牌課桌的數(shù)量 (單位:張) | 總價 (單位:元) | |
第一次 | 10 | 200 | 70000 |
第二次 | 15 | 100 | 75000 |
(1)每臺A品牌電腦和每張B品牌課桌的價格各是多少元?
(2)在“五·一”黃金周期間,經銷商對一次性購買量大的客戶打折優(yōu)惠:一次性購買A品牌電腦不少于50臺,按9折優(yōu)惠;一次性購買B品牌課桌不少于450張,按8折優(yōu)惠.如果學校再次購買A品牌電腦和B品牌課桌若干,恰好花去24萬元,并且均享受了優(yōu)惠,那么學?赡苡心膸追N購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將數(shù)字“6”旋轉180°,得到數(shù)字“9”,將數(shù)字“9”旋轉180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉180°,得到的數(shù)字是( )
A.96 B.69 C.66 D.99
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市為創(chuàng)建“國家級森林城市”,政府決定對江邊一處廢棄荒地進行綠化,要求栽植甲、乙兩種不同的樹苗共6000棵,且甲種樹苗不得多于乙種樹苗.某承包商以26萬元的報價中標承包了這項工程.根據(jù)調查及相關資料表明:移栽一棵樹苗的平均費用為8元,甲、乙兩種樹苗的購買價及成活率如表:
設購買甲種樹苗x棵,承包商獲得的利潤為y元.請根據(jù)以上信息解答下列問題:
(1) 設y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2) 承包商要獲得不低于中標價16%的利潤,應如何選購樹苗?
(3) 政府與承包商的合同要求,栽植這批樹苗的成活率必須不低于93%,否則承包商出資補栽;若成貨率達到94%以上(含94%),則政府另給予工程款總額6%的獎勵,該承包商應如何選購樹苗才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點D是等腰直角三角形ABC斜邊BC所在直線上一點(不與點B重合),連接AD.
(1)如圖1,當點D在線段BC上時,將線段AD繞點A逆時針方向旋轉90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE;
(2)如圖2,當點D在線段BC延長線上時,將線段AD繞點A逆時針方向旋轉90°得到線段AE,連接CE.請畫出圖形。上述結論是否仍然成立,并說明理由;
(3)根據(jù)圖2,請直接寫出AD、BD、CD三條線段之間的數(shù)量關系。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com