【題目】如圖,在中,,將線段繞點逆時針旋轉60°得到線段,,連接,若,則的度數(shù)為_____

【答案】60°

【解析】

連接AD,由旋轉的性質可得BCBD,∠DBC60°,可證△BCD為等邊三角形,由“SSS”可證△ABD≌△ACD,可得∠ABD∠ACD,由角的數(shù)量關系和等腰三角形的性質可求∠ABD∠ACD∠CBE15°,由三角形內角和可求解.

連接AD,ACBE交于F

線段BCB逆時針旋轉60°得到線段BD

BCBD,∠DBC60°,

∴△BCD為等邊三角形,

∴BDCD∠DCB∠DBC60°,

△ABD△ACD

,

∴△ABD≌△ACDSSS),

∴∠ABD∠ACD

∵∠BCE150°,

∴∠DCE90°

∵∠DEC45°,

∴∠CDE∠DEC45°,

∴CDCECB,且∠BCE150°

∴∠CBE∠CEB15°,

∵∠ABE∠DBC60°

∴∠ABD∠ACD∠CBE15°

∴∠ABC∠ACB75°,

∴∠BAC180°∠ABC∠ACB30°,

∠AFB=180°-∠ABE-∠BAC=90°,

∵BC=CE

AC垂直平分BE,

∴AB=AE

∴△ABE是等邊三角形,

=60°

故答案為:60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點C、A、A′,求此拋物線的解析式;

(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;

(3)點M是第一象限內拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx3的圖象經(jīng)過點(1,﹣4)和(﹣1,0).

1)求這個二次函數(shù)的表達式;

2x在什么范圍內,yx增大而減?該函數(shù)有最大值還是有最小值?求出這個最值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E是AD邊中點,BD、CE交于點H,BE、AH交于點G,則下列結論:

①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.

其中正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實黨中央提出的惠民政策,我市今年計劃開發(fā)建設A、B兩種戶型的廉租房40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設辦公室預算:一套A廉租房的造價為5.2萬元,一套B廉租房的造價為4.8萬元.

1)請問有幾種開發(fā)建設方案?

2)哪種建設方案投入資金最少?最少資金是多少萬元?

3)在(2)的方案下,為了讓更多的人享受到惠民政策,開發(fā)建設辦公室決定通過縮小廉租房的面積來降低造價、節(jié)省資金.每套A戶型廉租房的造價降低0.7萬元,每套B戶型廉租房的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設縮小面積后的廉租房,如果同時建設A、B兩種戶型,請你直接寫出再次開發(fā)建設的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某城市綠化工程進行招標,現(xiàn)有甲、乙兩個工程隊投標,已知甲隊單獨完成這項工程需要60.經(jīng)測算:如果甲隊先做20天,再由甲隊、乙隊合作12天,那么此時共完成總工作量的

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天需付工程款4.5萬元,乙隊施工一天需付工程款2萬元,該工程由甲乙兩隊合作若干天后,再由乙隊完成剩余的工作,若要求完成此項工程的工程款不超過186萬元,求甲、乙兩隊最多合作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,直線軸交于點,與軸交于點;拋物線,兩點,與軸交于另一點,拋物線的頂點為

1)求拋物線的解析式;

2)在直線上方的拋物線上有一動點,求出點到直線的距離的最大值;

3)如圖②,直線與拋物線的對稱軸相交于點,請直接寫出的平分線與軸的交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,AEBC交點E,連接DE,F(xiàn)DE上一點,且∠AFE=B=60°.

(1)求證:△ADF∽△DEC;

(2)AE=3,AD=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七、八、九年級共有1000名學生.學校統(tǒng)計了各年級學生的人數(shù),繪制了圖①、圖②兩幅不完整的統(tǒng)計圖.

1)將圖①的條形統(tǒng)計圖補充完整.

2)圖②中,表示七年級學生人數(shù)的扇形的圓心角度數(shù)為 °

3)學校數(shù)學興趣小組調查了各年級男生的人數(shù),繪制了如圖③所示的各年級男生人數(shù)占比的折線統(tǒng)計圖(年級男生人數(shù)占比=該年級男生人數(shù)÷該年級總人數(shù)×100%).請結合相關信息,繪制一幅適當?shù)慕y(tǒng)計圖,表示各年級男生及女生的人數(shù),并在圖中標明相應的數(shù)據(jù).

查看答案和解析>>

同步練習冊答案