已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣6,0),B點(diǎn)坐標(biāo)為(4,0),點(diǎn)D為BC的中點(diǎn),點(diǎn)E為線段AB上一動點(diǎn),連接DE經(jīng)過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.
(1)求拋物線的解析式;
(2)如圖①,將△BDE以DE為軸翻折,點(diǎn)B的對稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動時(shí),拋物線y=ax2+bx+8的對稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
解:(1)∵拋物線y=ax2+bx+8經(jīng)過點(diǎn)A(﹣6,0),B(4,0),
∴
解得
∴拋物線的解析式是:y=﹣x2﹣x+8.
(2)如圖①,作DM⊥拋物線的對稱軸于點(diǎn)M,,
設(shè)G點(diǎn)的坐標(biāo)為(﹣1,n),
由翻折的性質(zhì),可得BD=DG,
∵B(4,0),C(0,8),點(diǎn)D為BC的中點(diǎn),
∴點(diǎn)D的坐標(biāo)是(2,4),
∴點(diǎn)M的坐標(biāo)是(﹣1,4),DM=2﹣(﹣1)=3,
∵B(4,0),C(0,8),
∴BC==4,
∴,
在Rt△GDM中,
32+(4﹣n)2=20,
解得n=4±,
∴G點(diǎn)的坐標(biāo)為(﹣1,4+)或(﹣1,4﹣).
(3)拋物線y=ax2+bx+8的對稱軸上存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形.
①當(dāng)CD∥EF,且點(diǎn)E在x軸的正半軸時(shí),如圖②,,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),
設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),
則
解得
∴點(diǎn)F的坐標(biāo)是(﹣1,4),點(diǎn)C的坐標(biāo)是(1,0).
②當(dāng)CD∥EF,且點(diǎn)E在x軸的負(fù)半軸時(shí),如圖③,,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),
設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),
則
解得
∴點(diǎn)F的坐標(biāo)是(﹣1,﹣4),點(diǎn)C的坐標(biāo)是(﹣3,0).
③當(dāng)CE∥DF時(shí),如圖④,,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),
設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),
則
解得
∴點(diǎn)F的坐標(biāo)是(﹣1,12),點(diǎn)C的坐標(biāo)是(3,0).
綜上,可得
拋物線y=ax2+bx+8的對稱軸上存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形,
點(diǎn)F的坐標(biāo)是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在半徑為2,圓心角為90°的扇形內(nèi),以BC為直徑作半圓交AB于點(diǎn)D,連接CD,則陰影部分的面積是( 。
A.π﹣1 B. π﹣2 C. π﹣2 D. π﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作DE⊥BC于點(diǎn)E,且∠BDE=∠A.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)若AC=16,tanA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某中學(xué)組織學(xué)生去福利院慰問,在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購買1個(gè)甲禮品比購買1個(gè)乙禮品多花40元,并且花費(fèi)600元購買甲禮品和花費(fèi)360元購買乙禮品的數(shù)量相等.
(1)求甲、乙兩種禮品的單價(jià)各為多少元?
(2)學(xué)校準(zhǔn)備購買甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購買禮品的總費(fèi)用不超過2000元,那么最多可購買多少個(gè)甲禮品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖:把△ABC沿AB邊平移到△A′B′C′的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC面積的一半,若AB=,則此三角形移動的距離AA′是( 。
A. ﹣1 B. C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,1),B(-2,0),
C(0,1),請?jiān)趫D7中畫出△ABC,并畫出與△ABC
關(guān)于原點(diǎn)O對稱的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com