【題目】如圖,在平面直角坐標(biāo)系中,以點C(0,4)為圓心,半徑為4的圓交y軸正半軸于點A,AB是⊙C的切線.動點P從點A開始沿AB方向以每秒1個單位長度的速度運動,點Q從O點開始沿x軸正方向以每秒4個單位長度的速度運動,且動點P、Q從點A和點O同時出發(fā),設(shè)運動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1,求經(jīng)過A、P1、Q1三點的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切?并寫出此時點P和點Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點N,使NP+NQ最小,求出點N的坐標(biāo)并說明理由.
【答案】(1)y=, l:x=;(2)t=2時,PQ與⊙C相切,P(2,8),Q(8,0);(3)N(1,7),理由見解析.
【解析】
(1)先求出t=1時P1,Q1的坐標(biāo),然后用待定系數(shù)法即可得出拋物線的解析式,進(jìn)而可求出對稱軸l的解析式;
(2)當(dāng)直線PQ與圓C相切時,連接CP,CQ,根據(jù)平行線的性質(zhì)、角平分線的性質(zhì)和三角形的內(nèi)角和可得∠PCQ=90°,則有Rt△CMP∽Rt△QMC(M為PQ與圓C的切點),然后根據(jù)相似三角形的性質(zhì)即可求出t的值;
(3)本題是典型的“將軍飲馬”問題,解題的關(guān)鍵是確定N的位置,可先利用待定系數(shù)法求出此時拋物線的解析式,然后作出P點關(guān)于直線l的對稱點P′的坐標(biāo),連接P′Q,那么P′Q與直線l的交點即為所求的N點,至此只要求出直線P′Q的解析式,即可求出N點的坐標(biāo),問題即得解決.
解:(1)當(dāng)t=1時,AP1=1,OQ1=4,則A、P1、Q1的坐標(biāo)分別為A(0,8)、P1(1,8)、Q1(4,0),
設(shè)所求拋物線解析式為y=ax2+bx+c,則,解得:
∴拋物線的解析式為y=,對稱軸為直線l:x=;
(2)設(shè)PQ與⊙C相切于點M,如圖1,連接CP、CM、CQ,則PA=PM=t,QO=QM=4t,
∵CP、CQ分別平分∠APQ和∠OQP,∴,,
∵∠APQ+∠OQP=180°,∴∠CPQ+∠CQP=90°,
∴∠PCQ==90°,
∵CM⊥PQ,∴可得Rt△CMP∽Rt△QMC,
∴,即,∴t=±2,
由于時間t只能取正數(shù),所以t=2,即當(dāng)運動時間t=2秒時,PQ與⊙C相切.
此時:P(2,8),Q(8,0);
(3)∵A(0,8),P(2,8),Q(8,0),∴設(shè)此時拋物線的解析式為,
把A,P,Q代入,得:,解得:,
∴拋物線的解析式為:y=,此時拋物線的對稱軸為直線l:x=1,
作點P關(guān)于直線l的對稱點P',如圖2,則P'(0,8),即為點A,設(shè)P'Q與直線x=1交于點N,則此時NP+NQ最小,
∵P'(0,8),Q(8,0),∴直線P'Q的解析式為:y=﹣x+8,當(dāng)x=1時,y=﹣1+8=7.
因此N點的坐標(biāo)為(1,7).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,,,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點B、點C、點D的對應(yīng)點分別為點E、點F、點G.
如圖,當(dāng)點E落在DC邊上時,直寫出線段EC的長度為______;
如圖,當(dāng)點E落在線段CF上時,AE與DC相交于點H,連接AC,
求證:≌;
直接寫出線段DH的長度為______.
如圖設(shè)點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=4cm,P、Q兩點同時從點C出發(fā),點P沿從的方向運動,速度為2cm/秒;點Q沿從的方向運動,速度為1cm/秒.當(dāng)運動時間為t秒﹙0≤t≤3.5﹚時,設(shè)△PCQ的面積為y(cm2)(當(dāng)P、Q兩點未開始運動時,△PCQ的面積為0).則y(cm2)和t﹙秒﹚的函數(shù)關(guān)系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲,乙,丙三名校排球隊員每人10次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.
(1)若運動員丙測試成績的平均數(shù)和眾數(shù)都是7,則成績統(tǒng)計表中a= ,b= ;
(2)若在三名隊員中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的同學(xué)作為排球比賽的自由人,你認(rèn)為選誰更合適?請用你所學(xué)過的統(tǒng)計量加以分析說明(參考數(shù)據(jù):三人成績的方差分別為,,)
(3)訓(xùn)練期間甲、乙、丙三人之間進(jìn)行隨機(jī)傳球游戲,先由甲傳出球,經(jīng)過三次傳球,球回到甲手中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會整理參賽同學(xué)的成績,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
分?jǐn)?shù)段(分?jǐn)?shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= ,b= ;請補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分?jǐn)?shù)段70≤x<80對應(yīng)扇形的圓心角的度數(shù)是 ;
(3)競賽成績不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué). 學(xué)校從這4名同學(xué)中隨機(jī)抽2名同學(xué)接受電視臺記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x的正半軸交于點B,且B(1,0),與y的正半軸交于點A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點C落在雙曲線y=(k≠0)上,將正方形ABCD沿x軸負(fù)方向平移2個單位長度,使點D恰好落在雙曲線y=(k≠0)上的點D1處,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,G為邊AB中點,∠AGC=α.Q為線段BG上一動點(不與點B重合),點P在中線CG上,連接PA,PQ,記BQ=kGP.
(1)若α=60°,k=1,
①當(dāng)BQ=BG時,求∠PAG的度數(shù).
②寫出線段PA、PQ的數(shù)量關(guān)系,并說明理由.
(2)當(dāng)α=45°時.探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一組數(shù)據(jù)2,2,3,4,這組數(shù)據(jù)的中位數(shù)是2
B. 了解一批燈泡的使用壽命的情況,適合抽樣調(diào)查
C. 小明的三次數(shù)學(xué)成績是126分,130分,136分,則小明這三次成績的平均數(shù)是131分
D. 某日最高氣溫是,最低氣溫是,則該日氣溫的極差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=70°,將△ABC繞點A逆時針旋轉(zhuǎn),得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'=______°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com