如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當S取最大值時,等腰梯形ABCD的四個頂點都在⊙O上,點E和點F分別是AB和CD的中點,求⊙O的半徑R的值.
解:(1)作AH⊥CD于H,BG⊥CD于G,如圖①,
則四邊形AHGB為矩形,
∴HG=AB=3x,
∵四邊形ABCD為等腰梯形,
∴AD=BC,DH=CG,
在Rt△ADH中,設DH=t,
∵∠ADC=60°,
∴∠DAH=30°,
∴AD=2t,AH=t,
∴BC=2t,CG=t,
∵等腰梯形ABCD的周長為48,
∴3x+2t+t+3x+t+2t=48,解得t=8﹣x,
∴AD=2(8﹣x)=18﹣2x,
CD=8﹣x+3x+8﹣x=16+x;
(2)S=(AB+CD)•AH
=(3x+16+x)•
(8﹣x)
=﹣2x2+8
x+64
,
∵S=﹣2(x﹣2)2+72
,
∴當x=2時,S有最大值72;
(3)連結OA、OD,如圖②,
當x=2時,AB=6,CD=16+2=18,等腰梯形的高為×(8﹣2)=6
,
則AE=3,DF=9,
∵點E和點F分別是AB和CD的中點,
∴直線EF為等腰梯形ABCD的對稱軸,
∴EF垂直平分AB和CD,EF為等腰梯形ABCD的高,即EF=6,
∴等腰梯形ABCD的外接圓的圓心O在EF上,
設OE=a,則OF=6﹣a,
在Rt△AOE中,
∵OE2+AE2=OA2,
∴a2+32=R2,
在Rt△ODF中,
∵OF2+DF2=OD2,
∴(6﹣a)2+92=R2,
∴a2+32=(6﹣a)2+92,解得a=5
,
∴R2=(5)2+32=84,
∴R=2.
科目:初中數(shù)學 來源: 題型:
如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉,當點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉,當點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關系是 ;
②以①中的結論為前提,設AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(﹣2,0),與y軸交于點C,與反比例函數(shù)在第一象限內的圖象交于點B(m,n),連結OB.若S△AOB=6,S△BOC=2.
(1)求一次函數(shù)的表達式;
(2)求反比例函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
貴陽市中小學幼兒園“愛心助殘工程”第九屆助殘活動于2014年5月在貴陽市盲聾啞學校舉行,活動當天,貴陽市盲聾啞學校獲得捐贈的善款約為150000元.150000這個數(shù)用科學記數(shù)法表示為( �。�
| A. | 1.5×104 | B. | 1.5×105 | C. | 1.5×106 | D. | 15×104 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com