如圖1,邊長為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).

第一次操作:將線段EF繞點(diǎn)F順時針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時,記為點(diǎn)G;

第二次操作:將線段FG繞點(diǎn)G順時針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時,記為點(diǎn)H;

依次操作下去…

(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時線段EF的長;

(2)若經(jīng)過三次操作可得到四邊形EFGH.

①請判斷四邊形EFGH的形狀為   ,此時AE與BF的數(shù)量關(guān)系是   

②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;

(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.


解:(1)如題圖2,由旋轉(zhuǎn)性質(zhì)可知EF=DF=DE,則△DEF為等邊三角形.

在Rt△ADE與Rt△CDF中,

∴Rt△ADE≌Rt△CDF(HL)

∴AE=CF.

設(shè)AE=CF=x,則BE=BF=4﹣x

∴△BEF為等腰直角三角形.

∴EF=BF=(4﹣x).

∴DE=DF=EF=(4﹣x).

在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2

解得:x1=8﹣4,x2=8+4(舍去)

∴EF=(4﹣x)=4﹣4

DEF的形狀為等邊三角形,EF的長為4﹣4

(2)①四邊形EFGH的形狀為正方形,此時AE=BF.理由如下:

依題意畫出圖形,如答圖1所示:

由旋轉(zhuǎn)性質(zhì)可知,EF=FG=GH=HE,∴四邊形EFGH的形狀為正方形.

∵∠1+∠2=90°,∠2+∠3=90°,

∴∠1=∠3.

∵∠3+∠4=90°,∠2+∠3=90°,

∴∠2=∠4.

在△AEH與△BFE中,

∴△AEH≌△BFE(ASA)

∴AE=BF.

②利用①中結(jié)論,易證△AEH、△BFE、△CGF、△DHG均為全等三角形,

∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.

∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.

∴y=2x2﹣8x+16(0<x<4)

∵y=2x2﹣8x+16=2(x﹣2)2+8,

∴當(dāng)x=2時,y取得最小值8;當(dāng)x=0時,y=16,

∴y的取值范圍為:8≤y<16.

(3)經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是8,它可能為正多邊形,邊長為4﹣4.

如答圖2所示,粗線部分是由線段EF經(jīng)過7次操作所形成的正八邊形.

設(shè)邊長EF=FG=x,則BF=CG=x,

BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


下列幾何體中,主視圖是三角形的是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知反比例函數(shù)y=的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√,×,×”,如圖1.

(1)若將卡片無標(biāo)記的一面朝上擺在桌上再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“√”的概率.(請用“樹形圖法”或“列表法“求解)

(2)若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖2所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記.

①若隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的概率是多少?

②若揭開蓋子,看到的卡片正面標(biāo)記是“√”后,猜想它的反面也是“√”,求猜對的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖中幾何體的俯視圖是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


,則xy﹣3的值為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設(shè)AB=3x.

(1)用x表示AD和CD;

(2)用x表示S,并求S的最大值;

(3)如圖②,當(dāng)S取最大值時,等腰梯形ABCD的四個頂點(diǎn)都在⊙O上,點(diǎn)E和點(diǎn)F分別是AB和CD的中點(diǎn),求⊙O的半徑R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD為BC邊上的高.動點(diǎn)P從點(diǎn)A出發(fā),沿A→D方向以cm/s的速度向點(diǎn)D運(yùn)動.設(shè)△ABP的面積為S1,矩形PDFE的面積為S2,運(yùn)動時間為t秒(0<t<8),則t=  秒時,S1=2S2

查看答案和解析>>

同步練習(xí)冊答案