如圖1,邊長為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時,記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時,記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.
解:(1)如題圖2,由旋轉(zhuǎn)性質(zhì)可知EF=DF=DE,則△DEF為等邊三角形.
在Rt△ADE與Rt△CDF中,
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
設(shè)AE=CF=x,則BE=BF=4﹣x
∴△BEF為等腰直角三角形.
∴EF=BF=(4﹣x).
∴DE=DF=EF=(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,
解得:x1=8﹣4,x2=8+4(舍去)
∴EF=(4﹣x)=4﹣4.
DEF的形狀為等邊三角形,EF的長為4﹣4.
(2)①四邊形EFGH的形狀為正方形,此時AE=BF.理由如下:
依題意畫出圖形,如答圖1所示:
由旋轉(zhuǎn)性質(zhì)可知,EF=FG=GH=HE,∴四邊形EFGH的形狀為正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△AEH與△BFE中,
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中結(jié)論,易證△AEH、△BFE、△CGF、△DHG均為全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴當(dāng)x=2時,y取得最小值8;當(dāng)x=0時,y=16,
∴y的取值范圍為:8≤y<16.
(3)經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是8,它可能為正多邊形,邊長為4﹣4.
如答圖2所示,粗線部分是由線段EF經(jīng)過7次操作所形成的正八邊形.
設(shè)邊長EF=FG=x,則BF=CG=x,
BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√,×,×”,如圖1.
(1)若將卡片無標(biāo)記的一面朝上擺在桌上再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“√”的概率.(請用“樹形圖法”或“列表法“求解)
(2)若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖2所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記.
①若隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的概率是多少?
②若揭開蓋子,看到的卡片正面標(biāo)記是“√”后,猜想它的反面也是“√”,求猜對的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設(shè)AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當(dāng)S取最大值時,等腰梯形ABCD的四個頂點(diǎn)都在⊙O上,點(diǎn)E和點(diǎn)F分別是AB和CD的中點(diǎn),求⊙O的半徑R的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD為BC邊上的高.動點(diǎn)P從點(diǎn)A出發(fā),沿A→D方向以cm/s的速度向點(diǎn)D運(yùn)動.設(shè)△ABP的面積為S1,矩形PDFE的面積為S2,運(yùn)動時間為t秒(0<t<8),則t= 秒時,S1=2S2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com