【題目】如果一條直線把一個(gè)四邊形分成兩部分,這兩部分圖形的周長相等,那么這條直線稱為這個(gè)四邊形的等分周長線.在直角梯形ABCD中,ABCD,∠A90°,DCAD,∠B是銳角,cotBAB17.如果點(diǎn)E在梯形的邊上,CE是梯形ABCD等分周長線,那么△BCE的周長為____

【答案】42

【解析】

CHABH,設(shè)BH5a,證明四邊形ADCH為矩形,得到ADCH12a,根據(jù)題意求出a,根據(jù)勾股定理求出BC,根據(jù)等分周長線計(jì)算,得到答案.

解:作CHABH,

設(shè)BH5a,

cotB,

CH12a,

ABCD,

∴∠D=∠A90°,又CHAB,

∴四邊形ADCH為矩形,

ADCH12a,CDAH

DCAD,

AHCD12a,

由題意得,12a+5a17

解得,a1

ADCDAH12,BH5,

RtCHB中,BC13,

∴四邊形ABCD的周長=12+12+17+1354

CE是梯形ABCD等分周長線,

∴點(diǎn)EAB上,

AE17+13273

EH1239,

由勾股定理得,EC15

∴△BCE的周長=14+13+1542,

故答案為:42

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角尺按如圖的位置擺放(頂點(diǎn)C F 重合,邊CA與邊FE疊合,頂點(diǎn)B、C、D在一條直線上).將三角尺ABC繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)n°后(0n360 ),若EDAB,則n的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,ABBC,ADBC,ABBC1,E是邊AB上一點(diǎn),聯(lián)結(jié)CE

1)如果CECD,求證:ADAE;

2)聯(lián)結(jié)DE,如果存在點(diǎn)E,使得△ADE、△BCE和△CDE兩兩相似,求AD的長;

3)設(shè)點(diǎn)E關(guān)于直線CD的對稱點(diǎn)為M,點(diǎn)D關(guān)于直線CE的對稱點(diǎn)為N,如果AD,且M在直線AD上時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);

(3)若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我為祖國點(diǎn)贊征文活動(dòng)中,學(xué)校計(jì)劃對獲得一、二等獎(jiǎng)的學(xué)生分別獎(jiǎng)勵(lì)一支鋼筆,一本筆記本.已知購買2支鋼筆和3個(gè)筆記本共38元,購買4支鋼筆和5個(gè)筆記本共70.

1)鋼筆、筆記本的單價(jià)分別為多少元?

2)經(jīng)與商家協(xié)商,購買鋼筆超過30支時(shí),每增加一支,單價(jià)降低0.1元;超過50支,均按購買50支的單價(jià)銷售.筆記本一律按原價(jià)銷售.學(xué)校計(jì)劃獎(jiǎng)勵(lì)一、二等獎(jiǎng)學(xué)生共計(jì)100人,其中一等獎(jiǎng)的人數(shù)不少于30人,且不超過60人,這次獎(jiǎng)勵(lì)一等學(xué)生多少人時(shí),購買獎(jiǎng)品金額最少,最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,AC15sinBAC.點(diǎn)D在邊AB上(不與點(diǎn)A、B重合),以AD為半徑的⊙A與射線AC相交于點(diǎn)E,射線DE與射線BC相交于點(diǎn)F,射線AF與⊙A交于點(diǎn)G

1)如圖,設(shè)ADx,用x的代數(shù)式表示DE的長;

2)如果點(diǎn)E的中點(diǎn),求∠DFA的余切值;

3)如果△AFD為直角三角形,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=m,EBC邊上一點(diǎn),沿AE翻折△ABE,點(diǎn)B落在點(diǎn)F處.

1)連接CF,若CF//AE,求EC的長(用含m的代數(shù)式表示);

2)若EC=,當(dāng)點(diǎn)F落在矩形ABCD的邊上時(shí),求m的值;

3)連接DF,在BC邊上是否存在兩個(gè)不同位置的點(diǎn)E,使得?若存在,直接寫出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點(diǎn)C作CE∥AD交△ABC的外接圓O于點(diǎn)E,連接AE.

(1)求證:四邊形AECD為平行四邊形;

(2)連接CO,求證:CO平分∠BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:(14a+b=0;(29a+c3b;(38a+7b+2c0;(4)若點(diǎn)A-3,y1)、點(diǎn)B-,y2)、點(diǎn)Cy3)在該函數(shù)圖象上,則y1y3y2;(5)若方程ax+1)(x-5=-3的兩根為x1x2,且x1x2,則x1-15x2.其中正確的結(jié)論有(  )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊答案