【題目】如圖,在⊙O中,弦AB、CD互相垂直,垂足為E,點M在CD上,連接AM并延長交BC于點F,交圓上于點G,連接AD,AD=AM.
(1)如圖1,求證:AG⊥BC;
(2)如圖2,連接EF,DG,求證:EF∥DG;
(3)如圖3,在(2)的條件下,連接BG,若∠ABG=2∠BAG,EF=15,AB=32,求BG長.
【答案】(1)AG⊥BC;(2)E、F分別為MD、MG中點,EF∥DG ;(3)BG=18
【解析】
試題
(1)由AB⊥CD于點E可得∠B+∠C=90°;由AD=AM,可得∠CMF=∠AMD=∠D=∠B,由此可得∠CMF+∠C=90°,從而得到∠CFM=90°即可得到AG⊥BC;
(2)如圖2,連接CG,由AD=AM,AB⊥CD可得點E是DM的中點;由(1)可知∠CMF=∠B,結(jié)合∠B=∠CGA,可得∠CMF=∠CGA,從而可得CM=CG,結(jié)合(1)中結(jié)論AG⊥BC可得點F是MG的中點,由此可得EF是△MDG的中位線,從而可得結(jié)論EF∥DG;
(3)如圖3,作∠ABG的平分線交AG于點N,由∠ABG=2∠BAG,結(jié)合已知條件可證得∠ABG=∠DAG,從而得到AG=DG=2EF=30;由BN平分∠ABG及∠ABG=2∠BAG可得∠GBN=∠ABN=∠GAB,結(jié)合∠AGB=∠BGA可證得△GBN∽GAB,BN=AN,設(shè)AN=x、BG=y,根據(jù)相似三角形的性質(zhì)列出比例式即可解得BG的值.
試題解析:
(1)∵AB⊥CD于點E,
∴∠BEC=90°,
∴∠B+∠C=90°.
∵AD=AM,
∴∠AMD=∠D=∠B,
又∵∠CMF=∠AMD,
∴∠CMF=∠B,
∴∠CMF+∠C=90°,
∴∠CFM=90°,
∴AG⊥BC;
(2)如圖2,連接CG,
(2)由(1)可知,∠CMF=∠B,
∵∠B=∠CGA,
∴∠CMF=∠G,
∴CM=CG,
又∵AG⊥BC,
∴點F是MG的中點.
∵AD=AM,AB⊥CD,
∴點E是DM的中點,
∴EF是△MDG的中位線,
∴EF∥DG;
(3)∵由(2)可知,EF是△MDG的中位線,EF=15,
∴DG=2EF=30,
∵AD=AM,AB⊥CD,
∴∠DAG=2∠BAG,
又∵∠ABG=2∠BAG,
∴∠ABG=∠DAG,
∴AG=DG=30.
如圖3,作BN平分∠ABG,則∠GBN=∠ABN=∠GAB,
∴AN=BN,
∵∠AGB=∠BGA,
∴△GBN∽GAB,
∴,,
設(shè)BG=x,AN=BN=y,則GN=AG-AN=30-y,
∴,,兩式變形可得:,
解得:(不合題意,舍去),
∴BG=18.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.
(1)P是上一點(不與C、D重合),求證:∠CPD=∠COB;
(2)點P′在劣弧CD上(不與C、D重合)時,∠CP′D與∠COB有什么數(shù)量關(guān)系?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D是直線BC上一點,以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.設(shè)∠BAC=α,∠DCE=β.
(1)如圖①,點D在線段BC上移動時,角α與β之間的數(shù)量關(guān)系是____________,請說明理由;
(2)如圖②,點D在線段BC的延長線上移動時,角α與β之間的數(shù)量關(guān)系是____________,請說明理由;
(3)當點D在線段BC的反向延長線上移動時,請在圖③中畫出完整圖形并猜想角α與β之間的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線經(jīng)過兩點.
(1)求此拋物線的解析式;
(2)設(shè)拋物線的頂點為,將直線沿軸向下平移兩個單位得到直線,直線與拋物線的對稱軸交于點,求直線的解析式;
(3)在(2)的條件下,求到直線距離相等的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A﹣D﹣C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為t.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內(nèi),當t為何值時,⊙O1與⊙O2外切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查,問卷給出了四種上學方式供學生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).
根據(jù)以上信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學生;
(2)補全條形統(tǒng)計圖;
(3)如果全校有1200名學生,學習準備的400個自行車停車位是否夠用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A(0,1),點B(3,0),點C(4,3).
(1)判斷△ABC的形狀并說明理由;
(2)在線段OC的右側(cè),以OC為邊作等腰直角△OCD,點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時相向勻速行駛,當乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,而甲車到達B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時后兩車同時到達距A地300千米的C地(中途休息時間忽略不計).設(shè)兩車行駛的時間為x(小時),兩車之間的距離為y(千米),y與x之間的函數(shù)關(guān)系如圖所示,則當甲車到達B地時,乙車距A地_____千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com