【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點(diǎn)為(﹣1,0),下列結(jié)論:①abc0;②b2﹣4ac=0;③a2;④4a﹣2b+c0.其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

【答案】B

【解析】解:拋物線開(kāi)口向上,

a0,

對(duì)稱(chēng)軸在y軸左邊,

b0,

拋物線與y軸的交點(diǎn)在x軸的上方,

c+22,

c0,

abc0,

結(jié)論①不正確;

二次函數(shù)y=ax2+bx+c+2的圖象與x軸只有一個(gè)交點(diǎn),

∴△=0,

即b2﹣4a(c+2)=0,

b2﹣4ac=8a0,

結(jié)論②不正確;

對(duì)稱(chēng)軸x=﹣=﹣1,

b=2a,

b2﹣4ac=8a,

4a2﹣4ac=8a,

a=c+2,

c0,

a2,

結(jié)論③正確;

對(duì)稱(chēng)軸是x=﹣1,而且x=0時(shí),y2,

x=﹣2時(shí),y2,

4a﹣2b+c+22,

4a﹣2b+c0.

結(jié)論④正確.

綜上,可得

正確結(jié)論的個(gè)數(shù)是2個(gè):③④.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD⊙O的直徑,CD⊥AB,垂足為點(diǎn)FAO⊥BC,垂足為點(diǎn)EAO=1

1)求∠C的大;

2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人買(mǎi)了相同數(shù)量的信封和信箋,甲每發(fā)一封信都只用1張信箋,乙每發(fā)一封信都要用3張信箋,結(jié)果甲用掉了所有的信封,但余下50張信箋,而乙用掉了所有的信箋,但余下50個(gè)信封.

(1)求甲乙兩人各買(mǎi)的信封和信箋的數(shù)量分別為多少?

(2)若甲乙兩人每發(fā)出一封信需郵費(fèi)5元,求甲乙各用去多少元郵費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家見(jiàn)過(guò)形如x+yz,這樣的三元一次方程,并且知道x3,y4,z7就是適合該方程的一個(gè)正整數(shù)解,法國(guó)數(shù)學(xué)家費(fèi)爾馬早在17世紀(jì)還研究過(guò)形如x2+y2z2的方程.

1)請(qǐng)寫(xiě)出方程x2+y2z2的兩組正整數(shù)解:   

2)研究直角三角形和勾股數(shù)時(shí),我國(guó)古代數(shù)學(xué)專(zhuān)著(九章算術(shù))給出了如下數(shù):am2n2),bmncm2+n2),(其中mnm,n是奇數(shù)),那么,以a,b,c為三邊的三角形為直角三角形,請(qǐng)你加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣3,0),點(diǎn)Bx軸上異于點(diǎn)A一動(dòng)點(diǎn),設(shè)Bx0),以AB為邊在x軸的上方作正方形ABCD

1)如圖(1),若點(diǎn)B1,0),則點(diǎn)D的坐標(biāo)為  ;

2)若點(diǎn)EAB的中點(diǎn),∠DEF90°,且EF交正方形外角的平分線BFF

如圖(2),當(dāng)x0時(shí),求證:DEEF;

若點(diǎn)F的縱坐標(biāo)為y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn),EFDEBC于點(diǎn)F.

(1)求證:ADEBEF.

(2)設(shè)正方形的邊長(zhǎng)為4,AE=x,BF=y.當(dāng)x取什么值時(shí),y有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).

(1)如圖,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的表達(dá)式;

(2)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的By軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);

(3)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C(0,-2)時(shí),ODB的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線試紙y=ax2+bx+cx軸交于點(diǎn)A,C,與y軸交于點(diǎn)B.已知點(diǎn)A坐標(biāo)為(8,0),點(diǎn)B(0,8),點(diǎn)D為(0,3),tanDCO=,直線AB和直線CD相交于點(diǎn)E.

求拋物線的解析式,并化成y=a(x-m)2+h的形式;

設(shè)拋物線的頂點(diǎn)為G,請(qǐng)?jiān)谥本AB上方的拋物線上求點(diǎn)P的坐標(biāo),使得SABP=SABG.

點(diǎn)M為直線AB上的一點(diǎn),過(guò)點(diǎn)Mx軸的平行線分別交直線ABCD于點(diǎn)M,N,連結(jié)DM,DN,是否存在點(diǎn)M,使得DMN為等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為   度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案