【題目】如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到,則圖中陰影部分的面積是______

【答案】

【解析】

根據(jù)含30度的直角三角形三邊的關(guān)系得到AB2AC4,根據(jù)互余得到∠CAB60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到AC′=AC2,AB′=AB4,BC′=BC2,∠BAB30°,∠CAB′=∠CAB60°,則∠CAD=∠CAB′∠BAB′=30°,接著在RtACD中,利用∠CAD30°可得CDAC′=,所以BDBCCD,然后根據(jù)三角形面積公式、扇形面積公式和圖中陰影部分的面積=S扇形BABSADB進(jìn)行計(jì)算即可.

,,

,

繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到,

,,,,

中,

,,

,

題圖中陰影部分的面積=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)ACEF,ADBC,DEBF,AECF.

(1)求證:四邊形ABCD是平行四邊形;

(2)直接寫出圖中所有相等的線段(AECF除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中有點(diǎn)和某一函數(shù)圖象,過點(diǎn)軸的垂線,交圖象于點(diǎn),設(shè)點(diǎn),的縱坐標(biāo)分別為,.如果,那么稱點(diǎn)為圖象的上位點(diǎn);如果,那么稱點(diǎn)為圖象的圖上點(diǎn);如果,那么稱點(diǎn)為圖象的下位點(diǎn).

1)已知拋物線.

在點(diǎn)A(-1,0)B(0-2),C(23)中,是拋物線的上位點(diǎn)的是 ;

如果點(diǎn)是直線的圖上點(diǎn),且為拋物線的上位點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個(gè)新的圖象,記作圖象.⊙的圓心軸上,半徑為.如果在圖象和⊙上分別存在點(diǎn)和點(diǎn)F,使得線段EF上同時(shí)存在圖象的上位點(diǎn),圖上點(diǎn)和下位點(diǎn),求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)在線段上,以為直徑的相交于點(diǎn),與相交于點(diǎn)

1)求證:的切線;

2)在(1)的條件下,判斷以為頂點(diǎn)的四邊形為哪種特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)y1=的圖象上一點(diǎn),直線y2=與反比例函數(shù)y1=的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:

1)求反比例函數(shù)的解析式;

2)求點(diǎn)D坐標(biāo),并直接寫出y1y2時(shí)x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),與軸,軸分別交于兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出,時(shí)的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市地鐵1號(hào)線全長(zhǎng)約60km,市政府通過招標(biāo),甲、乙兩家地鐵工程公司承擔(dān)了施工任務(wù),根據(jù)招標(biāo)合同可知,甲公司每月計(jì)劃施工效率是乙公司的1.2倍,則乙公司單獨(dú)施工比甲公司單獨(dú)施工多用10個(gè)月,且市政府需要支付給甲公司的施工費(fèi)用為6億元/km,乙公司的施工費(fèi)用為5億元/km

1)甲、乙兩家地鐵工程公司每月計(jì)劃施工各為多少km?

2)由于設(shè)備和施工現(xiàn)場(chǎng)只能供一家地鐵工程公司單獨(dú)施工的原因,現(xiàn)計(jì)劃甲、乙兩家公司共用55個(gè)月恰好完成施工任務(wù)(每家公司施工時(shí)間不足一個(gè)月按照一個(gè)整月計(jì)算),且甲公司施工時(shí)間不得少于乙公司的兩倍,應(yīng)如何安排才能使市政府支付給兩家地鐵工程公司的總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問題

(1家庭已有一個(gè)男孩,準(zhǔn)備生一個(gè)孩子,第二個(gè)孩子是女孩的率是 ;

(2)乙家庭沒有孩子準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,以為弦的相切于點(diǎn)

1)求證:的切線;

2)將以下部分沿直線向上翻折.

①如圖2,若翻折后的弧過中點(diǎn),并交于點(diǎn),請(qǐng)判斷的關(guān)系,并說明理由.

②如圖3,若,且翻折后的弧恰好過點(diǎn),則的半徑為________

查看答案和解析>>

同步練習(xí)冊(cè)答案