【題目】將一副三角板和一張對(duì)邊平行的紙條按如圖的方式擺放,∠A=∠DEF=90°,∠EDF=45°,∠ABC=30°,點(diǎn)E,F均在邊AB上,點(diǎn)D在紙條的一邊上,若邊BC與紙條的另一邊重合,則∠α的度數(shù)是( 。
A.15°B.22.5°C.30°D.45°
【答案】A
【解析】
根據(jù)直角三角形兩銳角互余,求出∠ACB的度數(shù),根據(jù)平行線的性質(zhì),求出∠DMA的度數(shù),根據(jù)多邊形內(nèi)角和公式求出四邊形DMAE的度數(shù),分別減去其它三個(gè)角,求出∠MDE的度數(shù),最后減去∠FDE的度數(shù),即可解決.
解:如圖,延長(zhǎng)CA與紙條交于點(diǎn)M,
∵∠BAC=90°,∠ABC=30°,
∴∠ACB=60°,
∵紙條的對(duì)邊平行,
∴∠ACB+∠DMA=180°,
∴∠DMA=180°-60°=120°,
∵四邊形DMAE的內(nèi)角和=(4-2)×180°=360°,
∴∠MDB=360°-90°-90°-120°=60°,
∵∠EDF=45°,
∴∠α=60°-45°=15°.
故本題答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類(lèi)比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷(xiāo)售甲,乙兩種型號(hào)水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號(hào)水杯進(jìn)價(jià)為25元/個(gè),乙種型號(hào)水杯進(jìn)價(jià)為45元/個(gè),下表是前兩月兩種型號(hào)水杯的銷(xiāo)售情況:
時(shí)間 | 銷(xiāo)售數(shù)量(個(gè)) | 銷(xiāo)售收入(元)(銷(xiāo)售收入=售價(jià)×銷(xiāo)售數(shù)量) | |
甲種型號(hào) | 乙種型號(hào) | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號(hào)水杯的售價(jià);
(2)第三月超市計(jì)劃再購(gòu)進(jìn)甲、乙兩種型號(hào)水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過(guò)2600元,且甲種型號(hào)水杯最多購(gòu)進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購(gòu)進(jìn)甲種號(hào)水杯a個(gè),利潤(rùn)為w元,寫(xiě)出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小吳家準(zhǔn)備購(gòu)買(mǎi)一臺(tái)電視機(jī),小吳將收集到的某地區(qū)A、B、C三種品牌電視機(jī)銷(xiāo)售情況的有關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
根據(jù)上述三個(gè)統(tǒng)計(jì)圖,請(qǐng)解答:
(1)2014~2019年三種品牌電視機(jī)銷(xiāo)售總量最多的是 品牌,月平均銷(xiāo)售量最穩(wěn)定的是 品牌.
(2)2019年其他品牌的電視機(jī)年銷(xiāo)售總量是多少萬(wàn)臺(tái)?
(3)貨比三家后,你建議小吳家購(gòu)買(mǎi)哪種品牌的電視機(jī)?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)E是AD的中點(diǎn).
(1)求證:∠CAD=∠CBA.
(2)求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)A棟樓在B棟樓的南側(cè),兩樓高度均為90m,樓間距為MN.春分日正午,太陽(yáng)光線與水平面所成的角為55.7°,A棟樓在B棟樓墻面上的影高為DM;冬至日正午,太陽(yáng)光線與水平面所成的角為30°,A棟樓在B棟樓墻面上的影高為CM.已知CD=44.5m.
(1)求樓間距MN;
(2)若B號(hào)樓共30層,每層高均為3m,則點(diǎn)C位于第幾層?(參考數(shù)據(jù):tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)D是AB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在邊OM上運(yùn)動(dòng),則OD的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過(guò)點(diǎn).
(1)求二次函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)到軸的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,.點(diǎn)從點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以相同的速度沿向終點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)作于點(diǎn),連結(jié),以、為鄰邊作矩形,當(dāng)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),整個(gè)運(yùn)動(dòng)停止,設(shè)矩形與重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)①的長(zhǎng)為 ;
②用含的代數(shù)式表示線段的長(zhǎng)為 ;
(2)當(dāng)的長(zhǎng)度為10時(shí),求的值;
(3)求與的函數(shù)關(guān)系式;
(4)當(dāng)過(guò)點(diǎn)和點(diǎn)的直線垂直于的一邊時(shí),直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com