【題目】如圖,要測量長春南溪濕地公園的荷花池A、B兩端的距離,由于條件限制無法直接測得,請你用所學過的相似三角形的有關知識設計出一種測量方案.

具體要求:①用直尺或圓規(guī)畫出測量的示意圖,并說明應用的數(shù)學原理;②需要測量那些有關的數(shù)據(jù);③待測量的數(shù)據(jù)可以用a、b、cd等字母表示,最后表達出AB的長.

【答案】見解析

【解析】

如圖,取一點O,連接OA,OB,延長AOC,使得OCOA,延長BOD,使得ODBO,連接CD.量出CD的長記為a,則AB2a

如圖,取一點O,連接OA,OB,延長AOC,使得OCOA,延長BOD,使得ODBO,連接CD

量出CD的長記為a,則AB2a

理由:∵2,∠AOB=∠COD,

∴△AOB∽△COD

2,

AB2a

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請在方格紙上建立平面直角坐標系,使A(2,3),C(6,2),并求出B點坐標;

(2)以原點O為位似中心,相似比為2,在第一象限內將ABC放大,畫出放大后的圖形ABC;

(3)計算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解九年級學生體育測試成績情況,以九年級(1)班學生的體育測試成績?yōu)闃颖荆碆、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)

(1)求出D級學生的人數(shù)占全班總人數(shù)的百分比;

(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);

(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經過(2,1),(1,1)兩點,則下列關于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當x=0時,y的值大于1

C.當x=1時,y的值大于1  D.當x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于、兩點,點在原點的左側,點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.

求這個二次函數(shù)的表達式.

連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學要印制期末考試卷,甲印刷廠提出:每套試卷收0.6元印刷費,另收400元制版費;乙印刷廠提出:每套試卷收1元印刷費,不再收取制版費.

(1)分別寫出兩個廠的收費y()與印刷數(shù)量x()之間的函數(shù)關系式;

(2)請在上面的直角坐標系中分別作出(1)中兩個函數(shù)的圖象;

(3)若學校有學生2000,為保證每個學生均有試卷,則學校至少要付出印刷費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中有一格點三角形,該三角形的三個頂點為:A(1,1),B(﹣3,1),C(﹣3,﹣1).

(1)若△ABC的外接圓的圓心為P,則點P的坐標為_____,P的半徑為_____;

(2)如圖所示,在11×8的網格圖內,以坐標原點O點為位似中心,將△ABC按相似比2:1放大,A、B、C的對應點分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個單位長度,能使得B'C'所在的直線與⊙P相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績如圖所示.

根據(jù)圖示填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

A

______

85

______

B

85

______

100

結合兩校成績的平均數(shù)和中位數(shù),分析哪個學校的決賽成績較好;

計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+x+c的頂點坐標為(1,-4),圖象又經過點(2,-3).

:(1)拋物線y=ax2+x+c的解析式.

(2)求拋物線y=ax2+x+c與一次函數(shù)y=3x+11的交點坐標.

(3)求不等式ax2+x+c>3x+11的解集(直接寫出答案).

查看答案和解析>>

同步練習冊答案