【題目】拋物線y=ax2+x+c的頂點坐標為(1,-4),圖象又經(jīng)過點(2,-3).
求:(1)拋物線y=ax2+x+c的解析式.
(2)求拋物線y=ax2+x+c與一次函數(shù)y=3x+11的交點坐標.
(3)求不等式ax2+x+c>3x+11的解集(直接寫出答案).
【答案】(1)y=x2-2-3;(2)(-2,5),(7,32);(3)x>-2或x<7.
【解析】(1)設(shè)頂點式解析式為y=a(x-1)2-4,再把點(2,-3)代入求出a即可得解;
(2)聯(lián)立兩函數(shù)解析式求解即可;
(3)寫出拋物線圖象在直線上方部分的x的取值范圍即可.
(1)設(shè)頂點式解析式為y=a(x-1)2-4,
把點(2,-3)代入得,a(2-1)2-4=-3,
解得a=1,
∴y=(x-1)2-4=x2-2x-3,
即y=x2-2x-3;
(2)聯(lián)立,
解得,,
所以,交點坐標為(-2,5),(7,32);
(3)不等式的解集為x>-2或x<7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要測量長春南溪濕地公園的荷花池A、B兩端的距離,由于條件限制無法直接測得,請你用所學過的相似三角形的有關(guān)知識設(shè)計出一種測量方案.
具體要求:①用直尺或圓規(guī)畫出測量的示意圖,并說明應(yīng)用的數(shù)學原理;②需要測量那些有關(guān)的數(shù)據(jù);③待測量的數(shù)據(jù)可以用a、b、c、d等字母表示,最后表達出AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計 | 50 | c |
我們定義頻率=,比如由表中我們可以知道在這次隨機調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學為18人,因此這個人數(shù)對應(yīng)的頻率就是=0.36.
(1)統(tǒng)計表中的a、b、c的值;
(2)請將頻數(shù)分布表直方圖補充完整;
(3)求所有被調(diào)查學生課外閱讀的平均本數(shù);
(4)若該校八年級共有600名學生,你認為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A(4,n),與x軸相交于點B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)觀察反比函數(shù)y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點為原點,OM所在直線為x軸建立直角坐標系(如圖所示).
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”ABCD,使A、D點在拋物線上,B、C點在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長度之和的最大值是多少?請你幫施工隊計算一下.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為2,點A的坐標為(2,2),直線AB為⊙O的切線,B為切點.則B點的坐標為( )
A. (﹣,) B. (﹣,1) C. (﹣,) D. (﹣1,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點O的直線交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四邊形EFCD周長是( 。
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠B=90°,AB=3,BC=4,AC=5;
實踐與操作:過點A作一條直線,使這條直線將△ABC分成面積相等的兩部分,直線與BC交于點D.(尺規(guī)作圖,不寫作法,保留作圖痕跡,標清字母)
推理與計算:求點D到AC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長為12,求BC的長;
(2)∠BAC=105°,求∠PAQ的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com