【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學們利用網(wǎng)格線進行畫圖:

(1)在圖1中,畫一個頂點為格點、面積為5的正方形;

(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)

(3)在圖3中,找一格點D,滿足:CB、CA的距離相等;到點A、C的距離相等.

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.

【解析】

(1)根據(jù)題意得出正方形的邊長為,再利用勾股定理得出答案;
(2)利用軸對稱圖形的性質(zhì)得出即可;
(3)利用角平分線的性質(zhì)以及線段垂直平分線的性質(zhì)得出即可.

解:(1)如圖1所示:正方形即為所求;

(2)如圖2,線段有2條都是符合題意的答案;

(3)如圖3,點D即為所求.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字“1”、“2”、“3”,將它們背面朝上,洗勻后隨機抽取一張,記錄牌上的數(shù)字并把牌放回,再重復(fù)這樣的步驟兩次,得到三個數(shù)字a、b、c,則以a、b、c為邊長正好構(gòu)成等邊三角形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】最近,“校園安全”受到全社會的廣泛關(guān)注,重慶一中學生會新聞社準備近期做一個關(guān)于“校園安全”的?疄榱私馔瑢W們對“校園安全”知識的了解程度,決定隨機抽取部分同學進行一次問卷調(diào)查,問卷將了解程度分為(了解)、(了解很少)、(基本了解)、(不了解)四種類型,根據(jù)調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖信息解答下列問題:

(1)這次調(diào)查中,一共調(diào)查了 名學生,圖類所對應(yīng)的圓心角度數(shù)為

(2)請補全條形統(tǒng)計圖;

(3)為了讓全校師生都能更好地關(guān)注“校園安全”,學生會準備組織一次宣講活動,由問卷調(diào)查中“了解”的幾名同學組成一個宣講團.已知這幾名同學中有四名來自初一,其中兩名為男生;另外四名來自初二,其中一名為女生.若要在該宣講團中分別抽取初一、初二各一名同學在全校師生大會上作代表發(fā)言,請用列表法或畫樹狀圖的方法求出恰好抽到一名男生和一名女生來發(fā)言的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN=2,則AB(  )

A. B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtACB中,∠ACB=90°,點DAB的中點,點ECD的中點,過點CCFABAE的延長線于點F

1)求證:△ADE≌△FCE;

2)若∠DCF=120°,DE=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中有三點A(a,0),B(b,0),C(1,3),且a,b滿足|3b+a﹣2|+=0

(1)A,B的坐標;

(2)x負半軸上有一點D,使SDOC=SABC,求點D坐標:

(3)在坐標軸上是否還存在這樣的點D,使SDOC=SABC仍然成立?若存在直接寫出點D的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機調(diào)查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了 名學生.
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張華在一次數(shù)學活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導出“式子x+ (x>0)的最小值是2”.其推導方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導,你求得式子 (x>0)的最小值是(
A.2
B.1
C.6
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】判斷正誤,并說明理由(1)給定一組數(shù)據(jù),那么這組數(shù)據(jù)的眾數(shù)有可能不唯一________;理由________(2)給定一組數(shù)據(jù),那么這組數(shù)據(jù)的平均數(shù)一定是這組數(shù)據(jù)中的一個數(shù)________;

理由________(3)n個數(shù)的中位數(shù)一定是這n個數(shù)中的某一個________;理由________(4)9個數(shù)據(jù)(x1、x2、……、x9其平均數(shù)為m)的標準差S, 計算公式為: ________;理由________

查看答案和解析>>

同步練習冊答案