【題目】張華在一次數(shù)學(xué)活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導(dǎo)出“式子x+ (x>0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當(dāng)矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導(dǎo),你求得式子 (x>0)的最小值是( )
A.2
B.1
C.6
D.10
【答案】C
【解析】解:∵x>0, ∴在原式中分母分子同除以x,
即 =x+ ,
在面積是9的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,
矩形的周長是2(x+ );
當(dāng)矩形成為正方形時,就有x= ,(x>0),
解得x=3,
這時矩形的周長2(x+ )=12最小,
因此x+ (x>0)的最小值是6.
故選:C
【考點精析】利用分式的混合運算和完全平方公式對題目進(jìn)行判斷即可得到答案,需要熟知運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學(xué)們利用網(wǎng)格線進(jìn)行畫圖:
(1)在圖1中,畫一個頂點為格點、面積為5的正方形;
(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)
(3)在圖3中,找一格點D,滿足:①到CB、CA的距離相等;②到點A、C的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O為坐標(biāo)原點在正方形網(wǎng)格中建立直角坐標(biāo)系,若每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)試在y軸上找一點P,使PC+PB的值最小,請在圖中標(biāo)出P點的位置(留下作圖痕跡),并求出PC+PB的最小值;
(2)將△ABC先向下平移3個單位,再向右平移4個單位后得到△A1B1C1,請在圖中畫出△A1B1C1,并寫出點A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(-1,0),B(1,0),C(0,1),點D為x軸正半軸上的一個動點,點E為第一象限內(nèi)一點,且CE⊥CD,CE=CD.
(1)試說明:∠EBC=∠CAB ;
(2)取DE的中點F,連接OF,試判斷OF與AC的位置關(guān)系,并說明理由;
(3)在(2)的條件下,試探索O、D、F三點能否構(gòu)成等腰三角形,若能,請直接寫出所有符合條件的點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( )
A. 2.4 B. 4.8 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:∣1-∣+ -(π-3.14)0
(2)已知 (x-1)2 =16,求x的值
(3)已知8(x-1)3 -27=0,求x的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→C和B→C→D方向運動至相遇時停止.設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是( )
A.當(dāng)t=4秒時,S=4
B.AD=4
C.當(dāng)4≤t≤8時,S=2 t
D.當(dāng)t=9秒時,BP平分梯形ABCD的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com