【題目】如圖,一次函數的圖象分別與軸和軸交于,兩點,且與正比例函數的圖象交于點.
(1)求的值;
(2)求正比例函數的表達式;
(3)點是一次函數圖象上的一點,且的面積是3,求點的坐標;
(4)在軸上是否存在點,使的值最?若存在,求出點的坐標,若不存在,說明理由.
【答案】(1);(2);(3)或;(4).理由見解析.
【解析】
(1)將B點坐標代入一次函數即可;
(2)將B點坐標代入函數即可;
(3)求出一次函數與x軸的交點C,可得底邊OC,設的坐標為,則△OCD的高為用面積公式建立方程求解;
(4)找到點關于軸對稱的點的坐標為,求出直線的解析式,與x軸的交點即為P點.
(1)因為點在一次函數的圖象上,
所以,
(2)因為正比例函數圖象經過點,
所以,,所以,,
所以,;
(3)對于,令得,,
所以,點的坐標為,所以,,
設點的坐標為,
所以,,
所以,
當時,,所以,點的坐標為
當時,,
所以,點的坐標為;
(4)存在,理由如下:
由對稱性可知,點關于軸對稱的點的坐標為
設經過點、點的直線關系式為,
所以,,所以,
所以,直線關系式為,
對于,,令,得,
所以,點.
科目:初中數學 來源: 題型:
【題目】如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.
(1)求該反比例函數的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)某學校體育看臺的側面如圖中陰影部分所示,看臺有四級高度相等的小臺階,已知看臺高為1.6米,現要做一個不銹鋼的扶手AB及兩根與FG垂直且長度均為0.8米的不銹鋼架桿AD和8C(桿子的底端分別為D、C),且∠DAB=66.5°(cos66.5°≈0.4).
(1)求點D與點C的高度差DH;
(2)求所用不銹鋼材料的總長度(即AD+AB+BC的長).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)探究新知:如圖1,已知與的面積相等,試判斷與的位置關系,并說明理由.
(2)結論應用:
①如圖2,點,在反比例函數的圖像上,過點作軸,過點作軸,垂足分別為,,連接.試證明:.
②若①中的其他條件不變,只改變點,的位置如圖3所示,請畫出圖形,判斷與的位置關系并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點P在△ABC內,PA=2,將PAB繞點A逆時針旋轉得到△QAC,則PQ的長等于( )
A. 2
B.
C.
D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于函數y=﹣2x+1,下列結論正確的是( 。
A.y值隨x值的增大而增大
B.它的圖象與x軸交點坐標為(0,1)
C.它的圖象必經過點(﹣1,3)
D.它的圖象經過第一、二、三象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+6與x軸交于點A,與y軸交于點B,過點B的直線交x軸于點C,且AB=BC.
(1)求直線BC的解析式;
(2)點P為線段AB上一點,點Q為線段BC延長線上一點,且AP=CQ,設點Q橫坐標為m,求點P的坐標(用含m的式子表示,不要求寫出自變量m的取值范圍);
(3)在(2)的條件下,點M在y軸負半軸上,且MP=MQ,若∠BQM=45°,求直線PQ的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直線l經過A,D兩點,且sin∠DAB= . 動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.
(1)求腰BC的長;
(2)當Q在BC上運動時,求S與t的函數關系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com